Face Recognition: Deep Learning

DeepFace 1

Main idea

Learn a deep (7 layers) NN (20 million parameters) on 4 million identity labeled face images directly on RGB pixels.

Alignment

  • Use 6 fiducial points for 2D warp

  • Then 67 points for 3D model

  • Frontalize the face for input to NN

截屏2021-02-16 20.51.01

Representation

  • Output is fed in $k$-way softmax, that generates probability distribution over class labels.

    截屏2021-02-16 20.52.06

  • 🎯 Goal of training: maximize the probability of the correct class

FaceNet2

💡Idea

  • Map images to a compact Euclidean space, where distances correspond to face similarity
  • Find $f(x)\ \in \mathbb{R}^d$ for image $x$, so that
    • $d^2(f(x_1), f(x_2)) \rightarrow \text{small}$, if $x_1, x_2 \in \text{same identity}$
    • $d^2(f(x_1), f(x_3)) \rightarrow \text{large}$, if $x_1, x_2 \in \text{different identities}$

System architecture

截屏2021-02-16 21.04.45

  • CNN: optimized embedding
  • Triplet-based loss function: training

Triplet loss

Image triplets:

截屏2021-02-16 21.06.14 $$ \begin{array}{c} \left\\|f\left(x\_{i}^{a}\right)-f\left(x\_{i}^{p}\right)\right\\|\_{2}^{2}+\alpha<\left\\|f\left(x\_{i}^{a}\right)-f\left(x\_{i}^{n}\right)\right\\|_{2}^{2} \\\\ \forall\left(f\left(x\_{i}^{a}\right), f\left(x\_{i}^{p}\right), f\left(x\_{i}^{n}\right)\right) \in \mathcal{T} \end{array} $$ where
  • $x_i^a$: Anchor image

  • $x_i^p$: Positive image

  • $x_i^n$: Negative image

  • $\mathcal{T}$: Set of all possible triplets in the training set

  • $\alpha$: Margin between positive and negative pairs

Total Loss function to be minimized: $$ L=\sum_{i}^{N}\left[\left\|f\left(x_{i}^{a}\right)-f\left(x_{i}^{p}\right)\right\|_{2}^{2}-\left\|f\left(x_{i}^{a}\right)-f\left(x_{i}^{n}\right)\right\|_{2}^{2}+\alpha\right] $$

Triplet selection

  • Online Generation

  • Select only the semi-hard negatives and using all anchor-positive pairs of mini-batch

    $\rightarrow$ Select $x_i^n$ such that $$ \left\|f\left(x_{i}^{a}\right)-f\left(x_{i}^{p}\right)\right\|_{2}^{2}<\left\|f\left(x_{i}^{a}\right)-f\left(x_{i}^{n}\right)\right\|_{2}^{2} $$

Results

  • LFW: 99.63% $\pm$ 0.09
  • Youtube Faces DB: 95.12% $\pm$ 0.39

Deep Face Recognition 3

Key Questions

  • Can large scale datasets be built with minimal human intervention? Yes!

  • Can we propose a convolutional neural network which can compete with that of internet giants like Google and Facebook? Yes!

Dataset Collection

  1. Candidate list generation: Finding names of celebrities

    • Tap the knowledge on the web
    • 5000 identities
  2. Manual verification of celebrities: Finding Popular Celebrities

    • Collect representative images for each celebrity

    • 200 images/identity

    • Remove people with low representation on Google.

    • Remove overlap with public benchmarks

    • 2622 celebrities for the final dataset

  3. Rank image sets

    • 2000 images per identity
    • Searching by appending keyword “actor”
    • Learning classifier using data obtained the previous step.
    • Ranking 2000 images and selecting top 1000 images
    • Approx. 2.6 Million images of 2622 celebrities
  4. Near duplicate removal

    • VLAD descriptor based near duplicate removal
  5. Manual filtering

    • Curating the dataset further using manual checks

Convolutional Neural Network

  • The “Very Deep” Architecture

    • 3 x 3 Convolution Kernels (Very small)

    • Conv. Stride 1 px.

    • Relu non-linearity

    • No local contrast normalisation

    • 3 Fully connected layers

  • Training

    • Random Gaussian Initialization

    • Stochastic Gradient Descent with back prop.

    • Batch Size: 256

    • Incremental FC layer training

    • Learning Task Specific Embedding

      • Learning embedding by minimizing triplet loss $$ \sum_{(a, p, n) \in T} \max \left\{0, \alpha-\left\|\mathbf{x}_{a}-\mathbf{x}_{n}\right\|_{2}^{2}+\left\|\mathbf{x}_{a}-\mathbf{x}_{p}\right\|_{2}^{2}\right\} $$

      • Learning a projection from 4096 to 1024 dimensions

      • On line triplet formation at the beginning of each iteration

      • Fine tuned on target datasets

      • Only the projection layers learnt


  1. Y. Taigman, M. Yang, M. Ranzato and L. Wolf, “DeepFace: Closing the Gap to Human-Level Performance in Face Verification,” 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 1701-1708, doi: 10.1109/CVPR.2014.220. ↩︎

  2. Schroff, Florian & Kalenichenko, Dmitry & Philbin, James. (2015). FaceNet: A unified embedding for face recognition and clustering. 815-823. 10.1109/CVPR.2015.7298682. ↩︎

  3. Omkar M. Parkhi, Andrea Vedaldi and Andrew Zisserman. Deep Face Recognition. In Xianghua Xie, Mark W. Jones, and Gary K. L. Tam, editors, Proceedings of the British Machine Vision Conference (BMVC), pages 41.1-41.12. BMVA Press, September 2015. ↩︎

Previous
Next