SVM

SVM: Kernelized SVM

SVM (with features) Maximum margin principle Slack variables allow for margin violation argmin⁑wβˆ₯wβˆ₯2+Cβˆ‘iNΞΎi s.t. yi(wTΟ•(xi)+b)β‰₯1βˆ’ΞΎi,ΞΎiβ‰₯0 \begin{array}{ll} \underset{\mathbf{w}}{\operatorname{argmin}} \quad &\|\mathbf{w}\|^{2} + C \sum_i^N \xi_i \\\\ \text { s.t. } \quad & y_{i}\left(\mathbf{w}^{T} \color{red}{\phi(\mathbf{x}_{i})} + b\right) \geq 1 -\xi_i, \quad \xi_i \geq 0\end{array} Math basics Solve the constrained optimization problem: Method of Lagrangian Multipliers

2020-07-13

SVM: Kernel Methods

Kernel function Given a mapping function Ο•:Xβ†’V\phi: \mathcal{X} \rightarrow \mathcal{V}, the function K:xβ†’v,K(x,xβ€²)=βŸ¨Ο•(x),Ο•(xβ€²)⟩V \mathcal{K}: x \rightarrow v, \quad \mathcal{K}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\phi(\mathbf{x}), \phi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathcal{V}} is called a kernel function. β€œA kernel is a function that returns the result of a dot product performed in another space.

2020-07-13

SVM: Basics

🎯 Goal of SVM To find the optimal separating hyperplane which maximizes the margin of the training data it correctly classifies the training data it is the one which will generalize better with unseen data (as far as possible from data points from each category) SVM math formulation Assuming data is linear separable

2020-07-13