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The Gradient Descent Optimization Algorithms

Haobin Tan | 17. December 2019

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

www.kit.edu

http://www.kit.edu


Table of Contents

1 Gradient Descent Variants

2 Challenges of Gradient Descents

3 Gradient Descent Optimization Algorithms

Haobin Tan – The Gradient Descent Optimization Algorithms2 / 41



Notation

θ ∈ Rd : model parameters

J(θ): loss function

x ’s: input variables/features

y ’s: output/”target” variables

(x(i), y (i)): i-th training example

η: learning rate
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Gradient descent
First-order optimization algorithm for finding the minimum of the loss
function
Iteratively updates the parameters in opposite direction of the
gradient
Update rule:

θ = θ − η · ∇θJ(θ) (1)

Figure: Source: Stochastic vs Batch Gradient Descent
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Gradient descent variants

Difference: Amount of data used per update

Batch Gradient Descent (BGD)

Stochastic Gradient Descent (SGD)

Mini-Batch Gradient Descent (MBGD)
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Batch Gradient Descent

Batch Gradient Descent (BGD)

θ = θ − η · ∇θJ(θ) (2)

Computes gradient with the whole training dataset

Pros:
Guarantees to converge

Cons:
Very slow
Intractable for very large dataset
No online learning
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Batch Gradient Descent

Figure: Source: Ng [2000]
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Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

θ = θ − η · ∇θJ
(
θ; x(i); y (i)

)
(3)

Performs update for each training examples (x(i), y (i))

Pros:
Fast
Allows online learning
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Stochastic Gradient Descent: Cons

High variance updates

Figure: Source: Ruder [2016]
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Stochastic Gradient Descent: Cons

Complicates convergence

Figure: Source:
https://wikidocs.net/3413
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Mini-Batch Gradient Descent

Mini-Batch Gradient Descent (MBGD)

θ = θ − η · ∇θJ
(
θ; x(i:i+b); y (i:i+b)

)
(4)

b: Batch size (usually 50 ∼ 256)

Computes gradient for small random sets of training examples

Pros:
Reduces variance of updates
Performance boost from hardware optimization of matrix operations

Typically the algorithm of choice

Usually referred to as SGD
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Comparison and trade-offs

Method Accuracy
Update
Speed

Memory
Usage

Online
Learning

BGD very good slow high no
SGD good (with annealing) high low yes
MBGD good medium medium yes

Table: Gradient descent variants comparison
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Comparison and trade-offs

Figure: Source: Géron [2017]
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Choosing the proper learning rate

Figure: Source: https://blog.yani.io/sgd/

Too small (λ0)
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Choosing the proper learning rate

Figure: Source: https://blog.yani.io/sgd/

Proper (λ1)
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Choosing the proper learning rate

Figure: Source: https://blog.yani.io/sgd/

Too large (λ2, λ3)
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Non-convex Loss function

Figure: Source: Non-convex optimization

Stucks in local minima

Can not get to the global minima
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Optimization aspects

Update rule of gradient descent:

θ = θ − η · ∇θJ(θ)

Consider as
θ = θ − step size · step direction

Step direction
Momentum
Nesterov Momentum

Step size
AdaGrad
Adadelta
RMSprop
Adam
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Momentum

Momentum (Sutskever et al. [2013])

vt+1 = µvt − η∇θJ(θt)

θt+1 = θt + vt+1
(5)

µ ∈ [0, 1): “friction” coefficient (usually 0.9)

Figure: Momentum update at step t
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Momentum

Accelerates if the gradients changes in the same direction (→
faster convergence)

Reduces the updates if the gradient changes direction (→ less
fluctuations)

Figure: Momentum update at step t
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Momentum

Figure: Source: Goodfellow et al. [2016]

→: SGD without momentum

→: SGD with momentum
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Nesterov Momentum

Nesterov Momentum (Sutskever et al. [2013])

vt+1 = µvt − η∇Jθ (θt + µvt)

θt+1 = θt + vt+1,
(5)

µ: as in Momentum
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Nesterov Momentum vs. Momentum

Momentum
computes gradient at current
position

Nesterov momentum
computes gradient at
“lookahead” position
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AdaGrad

Adaptive Gradient Algorithm

AdaGrad (Duchi et al. [2011])

θt+1 = θt −
η√

Gt + ε
· gt (6)

gt : gradient of the loss function J(θ) w.r.t the parameter θ at step t

ε: smoothing item, aims to prevent division by 0 (usually 10−7)

Division and square root: element-wise operation

Gt =


∑t

τ=1 g2
τ,1 0 · · · 0

0
∑t

τ=1 g2
τ,2 · · · 0

...
...

. . .
...

0 0 · · ·
∑t

τ=1 g2
τ,d

 ∈ Rd×d
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AdaGrad

AdaGrad (Duchi et al. [2011])

θt+1 = θt −
η√

Gt + ε
· gt (6)

Each parameter θi is updated with different learning rate, depending
on the past gradients (Gt )

Large updates for infrequent parameters
Small updates for frequent parameters
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θt+1 = θt −
η√

Gt + ε
· gt (6)

Each parameter θi is updated with different learning rate, depending
on the past gradients (Gt )

Large updates for infrequent parameters
Small updates for frequent parameters

→ adaptive
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AdaGrad

AdaGrad (Duchi et al. [2011])

θt+1 = θt −
η√

Gt + ε
· gt (6)

Pros
Lesser need to manually tune learning rate
Suitable for sparse data
Improve robustness

Cons
Continual shrinking of learning rate
Still need to manually select a global learning rate
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Adadelta

Proposed by Zeiler [2012]

Extension of AdaGrad
Improve upon two main disadvantages of AdaGrad

Continual shrinking of learning rate throughout training
Necessity of a manually selected global learning rate
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Adadelta: Accumulate over window
AdaGrad: accumulates all previous squared gradients

Adadelta: restricts the window of past accumulated squared
gradients to a fixed size

Approximated with Exponentially Weighted Moving Average (EWMA):

E
[
g2]

t
= µE

[
g2]

t−1
+ (1− µ)g2

t , µ ∈ [0, 1) (7)

Replace Gt in AdaGrad (Equation (6)):

∆θt = − η√
E [g2]t + ε

· gt (8)

Denominator is Root Mean Square (RMS) of the gradient:

RMS[g]t =
√

E [g2]t + ε (9)

Finally
∆θt = − η

RMS[g]t
· gt (10)
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Adadelta: Correct units with Hessian
approximation

Update rule of gradient descent:

θt+1 = θt − η∇θJ(θt)

= θt − η · gt

Newton’s method:

θt+1 = θt − D2J(θt)
−1∇θJ(θt)

= θt − H(J(θt))−1 · gt
(11)
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Adadelta: Correct units with Hessian
approximation

Update rule of gradient descent:

θt+1 = θt − η∇θJ(θt)

= θt − η · gt

Newton’s method:

θt+1 = θt − D2J(θt)
−1∇θJ(θt)

= θt − H(J(θt))−1 · gt
(11)

→ H(J(θt))−1 as “automatically adaptive” learning rate
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Adadelta: Correct Units with Hessian
Approximation

How to compute H(J(θt))−1?

Diagonal approximation to the Hessian proposed by Becker et al.
[1988]:

(12)

Ht := H(J(θt ))
diag(Ht ): diagonal Hessian
µ: Smoothing item, aims to prevent division by 0
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Adadelta: Correct units with Hessian
approximation

(Assuming a diagonal Hessian):

H−1
t ≈ 1

Ht
=

1
∂2J
∂θ2

t

(13)

Rearrange Newton’s method:

∆θt ≈
gt

Ht
=

∂J
∂θt

∂2J
∂θ2

t

(14)

⇒ 1
∂2J
∂θ2

t

=
∆θt
∂J
∂θt

(15)
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Adadelta: Correct Units with Hessian
Approximation

1
∂2J
∂θ2
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=
∆θt
∂J
∂θt
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Adadelta: Correct Units with Hessian
Approximation

1
∂2J
∂θ2

t

=
∆θt
∂J
∂θt

Estimate ∂J
∂θt

with EWMA of the previous gradient:

∂J
∂θt
≈ RMS[g]t
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Adadelta: Correct Units with Hessian
Approximation

1
∂2J
∂θ2

t

=
∆θt

RMS[g]t
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Adadelta: Correct Units with Hessian
Approximation

1
∂2J
∂θ2

t

=
∆θt

RMS[g]t

Estimate ∆θt with EWMA of the previous ∆θ (assuming the
curvature is locally smooth):

E
[
∆θ2]

t−1 = µE
[
∆θ2]

t−2 + (1− µ)∆θ2
t−1

RMS[∆θ]t−1 =
√

E [∆θ2]t−1 + ε

∆θt ≈ RMS[∆θ]t−1
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Adadelta: Correct Units with Hessian
Approximation

1
∂2J
∂θ2

t

=
RMS[∆θ]t−1

RMS[g]t
(16)
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Adadelta: Update Rule

θt+1 = θt − H−1
t gt

(13)
≈ θt −

1
Ht

gt

(16)
=

RMS[∆θ]t−1

RMS[g]t
gt

Adadelta (Zeiler [2012])

θt+1 = θt −
RMS[∆θ]t−1

RMS[g]t
gt (17)
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RMSprop

Unpublished optimization algorithm

Proposed by Geoff Hinton in his Coursera course1

RMSprop

E
[
g2]

t = µE
[
g2]

t−1 + (1− µ)g2
t

θt+1 = θt −
η√

E [g2]t + ε
· gt

(9)
= θt −

η

RMS[g]t
· gt

(18)

µ: Decaying hyperparameter (typically 0.9)

ε: Smoothing item, aims to prevent division by 0

Good default value for η: 0.001

1www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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Adam

Adaptive Moment Estimation

Combination of Momentum and RMSprop
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Adam

Adaptive Moment Estimation
Combination of Momentum and RMSprop

Stores moving average of past gradients (like Momentum)

mt = β1mt−1 + (1− β1) gt (19)

mt : first moment (mean) of gradients
β1: decaying rate (default: 0.9)

Stores moving average of past squared gradients (like RMSprop)

vt = β2vt−1 + (1− β2) g2
t (20)

vt : second moment (uncentered variance) of gradients
β2: decaying rate (default: 0.999)
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Adam: Bias correction

mt and vt are initialized as 0-vectors. → biased towards 0 at the
beginning

Bias correction:

m̂t =
mt

1− βt
1

(21)

v̂t =
vt

1− βt
2

(22)
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Adam: Update rule

Adam (Kingma and Ba [2014])

θt+1 = θt −
η√

v̂t + ε
m̂t (23)

ε: Smoothing item, aims to prevent division by 0 (default: 10−8)
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Adam

Figure: Source: Kingma and Ba [2014]
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Summary

Algorithm Update rule

Vanilla gradient descent
gt = ∇θJ(θt)

∆θt = −ηgt

Momentum ∆θt = µvt − ηgt

Nesterov Momentum ∆θt = vt+1 = µvt − η∇Jθ (θt + µvt)

AdaGrad ∆θt = − η√
Gt +ε

· gt

Adadelta ∆θt = −RMS[∆θ]t−1
RMS[g]t

gt

RMSprop ∆θt = η
RMS[g]t

· gt

Adam ∆θt = − η√
v̂t +ε

m̂t

Table: Optimization algorithms summary
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Optimizer selection

Which algorithm should we choose?

No consensus on this point

Seems to be heavily reliant on the practitioner’s familiarity with the
algorithm
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Optimizer selection: Suggestions

The most popular optimization algorithms actively in use:
SGD
SGD with momentum
RMSprop
RMSprop with momentum
Adadelta
Adam

Adaptive learning rate methods (AdaGrad, Adadelta, RMSprop,
Adam) have fairly robust performance

Adam is slightly better than RMSprop

Input data is sparse→ Adaptive learning rate methods

Care about fast convergence and train a deep or complex neural
network→ Prefer adaptive learning rate methods
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Thanks for your attention!
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Exponentially Weighted Moving Average

Exponentially Weighted Moving Average (EWMA)

St =

{
0 t = 0

βSt−1 + (1− β)Yt t > 0
(24)

β ∈ [0, 1): Degree of weighting decrease

Yt : Real measurement value

St : Weighted average value
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Exponentially Weighted Moving Average

Exponentially Weighted Moving Average (EWMA)

St =

{
0 t = 0

βSt−1 + (1− β)Yt t > 0
(24)

Smoothing
Greater β: Adapts more slowly to changes→ smoother
Smaller β: Adapts more quickly to changes→ noiser, more
outliners
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Exponentially Weighted Moving Average

Figure: Source: Deep Learning Specialization

β = 0.9

β = 0.98

β = 0.5
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Exponentially Weighted Moving Average

Figure: Source: Deep Learning Specialization
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Exponentially Weighted Moving Average

Bias towards 0 at the beginning

Bias correction:

Exponentially Weighted Moving Average (EWMA) with bias
correction

vt =
βvt−1 + (1− β)θt

1− βt (25)
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Problem of Units

At each update, we apply ∆θ to θ

Unit of θ and ∆θ should match

The units in first-order methods relate to the gradient, not the
parameter (assuming unitless J(θ)):

units of ∆θ ∝ units of g ∝ ∂J
∂θ
∝ 1

units of θ

Second-order methods have the correct units for the parameter
updates:

units of ∆θ ∝ H−1g ∝
∂J
∂θ
∂2J
∂θ2

∝ units of θ
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Adadelta: Ensures Correct Units

Recall: After accumulating over window, we have Equation (10):

∆θt = − η

RMS[g]t
· gt

In order to maintain the correct units, we need to replace η with a
quantity proportional to ∆θt

Estimate ∆θt with RMS[∆θ]t−1 (assuming locally smooth curvature)

Update rule of Adadelta:

θt+1 = θt −
RMS[∆θ]t−1

RMS[g]t
gt

Haobin Tan – The Gradient Descent Optimization Algorithms8 / 14



Adadelta: Ensures Correct Units

Recall: After accumulating over window, we have Equation (10):

∆θt = − η

RMS[g]t
· gt

In order to maintain the correct units, we need to replace η with a
quantity proportional to ∆θt

Estimate ∆θt with RMS[∆θ]t−1 (assuming locally smooth curvature)

Update rule of Adadelta:

θt+1 = θt −
RMS[∆θ]t−1

RMS[g]t
gt

Haobin Tan – The Gradient Descent Optimization Algorithms8 / 14



Adadelta: Ensures Correct Units

Recall: After accumulating over window, we have Equation (10):

∆θt = − η

RMS[g]t
· gt

In order to maintain the correct units, we need to replace η with a
quantity proportional to ∆θt

Estimate ∆θt with RMS[∆θ]t−1 (assuming locally smooth curvature)

Update rule of Adadelta:

θt+1 = θt −
RMS[∆θ]t−1

RMS[g]t
gt

Haobin Tan – The Gradient Descent Optimization Algorithms8 / 14



Adadelta: Ensures Correct Units

Recall: After accumulating over window, we have Equation (10):

∆θt = − η

RMS[g]t
· gt

In order to maintain the correct units, we need to replace η with a
quantity proportional to ∆θt

Estimate ∆θt with RMS[∆θ]t−1 (assuming locally smooth curvature)

Update rule of Adadelta:

θt+1 = θt −
RMS[∆θ]t−1

RMS[g]t
gt

Haobin Tan – The Gradient Descent Optimization Algorithms8 / 14



Table of Contents

4 Exponentially Weighted Moving Average

5 Adadelta: Correct Units with Hessian Approximation (Another Aspect)

6 Newton’s Method for Optimization

7 AdaGrad: Put More Weight on Rare Features

Haobin Tan – The Gradient Descent Optimization Algorithms9 / 14



Newton’s Method for Optimization
Univariate:

xt+1 = xt −
f ′ (xt)

f ′′ (xt)
(26)

Multivariate:
xt+1 = xt − [H(f (xt))]−1∇f (xt) (27)

Figure: Source: Taylor Series approximation, newton’s method and optimization
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Newton’s Method Derivation

Taylor series approximation

f (xt+1) = f (xt + ∆x) ≈ f (xt) + f ′ (xt) ∆x +
1
2

f ′′ (xt) ∆x2

Find ∆x such that (xp + ∆x) is the solution to minimizing the
equation
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d
d∆x

(
f (xt) + f ′ (xt) ∆x +

1
2

f ′′ (xt) ∆x2
)

!
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!
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Sparse Data Examples

xt,1 xt,2 xt,3 yt

1 0 0 1
0.5 0 1 -1
-0.5 1 0 1
0 0 0 -1
0.5 0 0 1
1 0 0 -1
-1 1 0 1
-0.5 0 1 -1

Frequent, irrelevant

Infrequent, predictive

Infrequent, predictive
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Sparse Data Examples

Figure: Source: Machine Learning 2

2https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
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