
SEMINAR:NEURONALE NETZE UND KÜNSTLICHE INTELLIGENZ

The Gradient Descent Optimization Algorithms

Haobin Tan | 17. December 2019

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

www.kit.edu

http://www.kit.edu

Table of Contents

1 Gradient Descent Variants

2 Challenges of Gradient Descents

3 Gradient Descent Optimization Algorithms

Haobin Tan – The Gradient Descent Optimization Algorithms2 / 41

Notation

θ ∈ Rd : model parameters

J(θ): loss function

x ’s: input variables/features

y ’s: output/”target” variables

(x(i), y (i)): i-th training example

η: learning rate

Haobin Tan – The Gradient Descent Optimization Algorithms3 / 41

Table of Contents

1 Gradient Descent Variants
Batch Gradient Descent
Stochastic Gradient Descent
Mini-batch Gradient Descent
Comparison and Trade-offs

2 Challenges of Gradient Descents

3 Gradient Descent Optimization Algorithms

Haobin Tan – The Gradient Descent Optimization Algorithms4 / 41

Gradient descent
First-order optimization algorithm for finding the minimum of the loss
function
Iteratively updates the parameters in opposite direction of the
gradient
Update rule:

θ = θ − η · ∇θJ(θ) (1)

Figure: Source: Stochastic vs Batch Gradient Descent

Haobin Tan – The Gradient Descent Optimization Algorithms5 / 41

https://medium.com/@divakar_239/stochastic-vs-batch-gradient-descent-8820568eada1

Gradient descent variants

Difference: Amount of data used per update

Batch Gradient Descent (BGD)

Stochastic Gradient Descent (SGD)

Mini-Batch Gradient Descent (MBGD)

Haobin Tan – The Gradient Descent Optimization Algorithms6 / 41

Batch Gradient Descent

Batch Gradient Descent (BGD)

θ = θ − η · ∇θJ(θ) (2)

Computes gradient with the whole training dataset

Pros:
Guarantees to converge

Cons:
Very slow
Intractable for very large dataset
No online learning

Haobin Tan – The Gradient Descent Optimization Algorithms7 / 41

Batch Gradient Descent

Batch Gradient Descent (BGD)

θ = θ − η · ∇θJ(θ) (2)

Computes gradient with the whole training dataset
Pros:

Guarantees to converge

Cons:
Very slow
Intractable for very large dataset
No online learning

Haobin Tan – The Gradient Descent Optimization Algorithms7 / 41

Batch Gradient Descent

Batch Gradient Descent (BGD)

θ = θ − η · ∇θJ(θ) (2)

Computes gradient with the whole training dataset
Pros:

Guarantees to converge

Cons:
Very slow
Intractable for very large dataset
No online learning

Haobin Tan – The Gradient Descent Optimization Algorithms7 / 41

Batch Gradient Descent

Figure: Source: Ng [2000]

Haobin Tan – The Gradient Descent Optimization Algorithms8 / 41

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

θ = θ − η · ∇θJ
(
θ; x(i); y (i)

)
(3)

Performs update for each training examples (x(i), y (i))

Pros:
Fast
Allows online learning

Haobin Tan – The Gradient Descent Optimization Algorithms9 / 41

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

θ = θ − η · ∇θJ
(
θ; x(i); y (i)

)
(3)

Performs update for each training examples (x(i), y (i))

Pros:
Fast
Allows online learning

Haobin Tan – The Gradient Descent Optimization Algorithms9 / 41

Stochastic Gradient Descent: Cons

High variance updates

Figure: Source: Ruder [2016]

Haobin Tan – The Gradient Descent Optimization Algorithms10 / 41

Stochastic Gradient Descent: Cons

Complicates convergence

Figure: Source:
https://wikidocs.net/3413

Haobin Tan – The Gradient Descent Optimization Algorithms10 / 41

https://wikidocs.net/3413

Mini-Batch Gradient Descent

Mini-Batch Gradient Descent (MBGD)

θ = θ − η · ∇θJ
(
θ; x(i:i+b); y (i:i+b)

)
(4)

b: Batch size (usually 50 ∼ 256)

Computes gradient for small random sets of training examples

Pros:
Reduces variance of updates
Performance boost from hardware optimization of matrix operations

Typically the algorithm of choice

Usually referred to as SGD

Haobin Tan – The Gradient Descent Optimization Algorithms11 / 41

Mini-Batch Gradient Descent

Mini-Batch Gradient Descent (MBGD)

θ = θ − η · ∇θJ
(
θ; x(i:i+b); y (i:i+b)

)
(4)

b: Batch size (usually 50 ∼ 256)

Computes gradient for small random sets of training examples
Pros:

Reduces variance of updates
Performance boost from hardware optimization of matrix operations

Typically the algorithm of choice

Usually referred to as SGD

Haobin Tan – The Gradient Descent Optimization Algorithms11 / 41

Mini-Batch Gradient Descent

Mini-Batch Gradient Descent (MBGD)

θ = θ − η · ∇θJ
(
θ; x(i:i+b); y (i:i+b)

)
(4)

b: Batch size (usually 50 ∼ 256)

Computes gradient for small random sets of training examples
Pros:

Reduces variance of updates
Performance boost from hardware optimization of matrix operations

Typically the algorithm of choice

Usually referred to as SGD

Haobin Tan – The Gradient Descent Optimization Algorithms11 / 41

Mini-Batch Gradient Descent

Mini-Batch Gradient Descent (MBGD)

θ = θ − η · ∇θJ
(
θ; x(i:i+b); y (i:i+b)

)
(4)

b: Batch size (usually 50 ∼ 256)

Computes gradient for small random sets of training examples
Pros:

Reduces variance of updates
Performance boost from hardware optimization of matrix operations

Typically the algorithm of choice

Usually referred to as SGD

Haobin Tan – The Gradient Descent Optimization Algorithms11 / 41

Comparison and trade-offs

Method Accuracy
Update
Speed

Memory
Usage

Online
Learning

BGD very good slow high no
SGD good (with annealing) high low yes
MBGD good medium medium yes

Table: Gradient descent variants comparison

Haobin Tan – The Gradient Descent Optimization Algorithms12 / 41

Comparison and trade-offs

Figure: Source: Géron [2017]

Haobin Tan – The Gradient Descent Optimization Algorithms13 / 41

Table of Contents

1 Gradient Descent Variants

2 Challenges of Gradient Descents
Choosing the Proper Learning Rate
Non-convex loss function

3 Gradient Descent Optimization Algorithms

Haobin Tan – The Gradient Descent Optimization Algorithms14 / 41

Choosing the proper learning rate

Figure: Source: https://blog.yani.io/sgd/

Too small (λ0)

Haobin Tan – The Gradient Descent Optimization Algorithms15 / 41

https://blog.yani.io/sgd/

Choosing the proper learning rate

Figure: Source: https://blog.yani.io/sgd/

Proper (λ1)

Haobin Tan – The Gradient Descent Optimization Algorithms15 / 41

https://blog.yani.io/sgd/

Choosing the proper learning rate

Figure: Source: https://blog.yani.io/sgd/

Too large (λ2, λ3)

Haobin Tan – The Gradient Descent Optimization Algorithms15 / 41

https://blog.yani.io/sgd/

Non-convex Loss function

Figure: Source: Non-convex optimization

Stucks in local minima

Can not get to the global minima

Haobin Tan – The Gradient Descent Optimization Algorithms16 / 41

https://www.cs.ubc.ca/labs/lci/mlrg/slides/non_convex_optimization.pdf

Non-convex Loss function

Figure: Source: Non-convex optimization

Stucks in local minima

Can not get to the global minima

Haobin Tan – The Gradient Descent Optimization Algorithms16 / 41

https://www.cs.ubc.ca/labs/lci/mlrg/slides/non_convex_optimization.pdf

Table of Contents

1 Gradient Descent Variants

2 Challenges of Gradient Descents

3 Gradient Descent Optimization Algorithms
Momentum
Nesterov Momentum
Adagrad
Adadelta
RMSprop
Adam
Optimizer selection

Haobin Tan – The Gradient Descent Optimization Algorithms17 / 41

Optimization aspects

Update rule of gradient descent:

θ = θ − η · ∇θJ(θ)

Consider as
θ = θ − step size · step direction

Step direction
Momentum
Nesterov Momentum

Step size
AdaGrad
Adadelta
RMSprop
Adam

Haobin Tan – The Gradient Descent Optimization Algorithms18 / 41

Optimization aspects

Update rule of gradient descent:

θ = θ − η · ∇θJ(θ)

Consider as
θ = θ − step size · step direction

Step direction
Momentum
Nesterov Momentum

Step size
AdaGrad
Adadelta
RMSprop
Adam

Haobin Tan – The Gradient Descent Optimization Algorithms18 / 41

Optimization aspects

Update rule of gradient descent:

θ = θ − η · ∇θJ(θ)

Consider as
θ = θ − step size · step direction

Step direction
Momentum
Nesterov Momentum

Step size
AdaGrad
Adadelta
RMSprop
Adam

Haobin Tan – The Gradient Descent Optimization Algorithms18 / 41

Optimization aspects

Update rule of gradient descent:

θ = θ − η · ∇θJ(θ)

Consider as
θ = θ − step size · step direction

Step direction
Momentum
Nesterov Momentum

Step size
AdaGrad
Adadelta
RMSprop
Adam

Haobin Tan – The Gradient Descent Optimization Algorithms18 / 41

Momentum

Momentum (Sutskever et al. [2013])

vt+1 = µvt − η∇θJ(θt)

θt+1 = θt + vt+1
(5)

µ ∈ [0, 1): “friction” coefficient (usually 0.9)

Figure: Momentum update at step t

Haobin Tan – The Gradient Descent Optimization Algorithms19 / 41

Momentum

Accelerates if the gradients changes in the same direction (→
faster convergence)

Reduces the updates if the gradient changes direction (→ less
fluctuations)

Figure: Momentum update at step t

Haobin Tan – The Gradient Descent Optimization Algorithms19 / 41

Momentum

Figure: Source: Goodfellow et al. [2016]

→: SGD without momentum

→: SGD with momentum

Haobin Tan – The Gradient Descent Optimization Algorithms20 / 41

Nesterov Momentum

Nesterov Momentum (Sutskever et al. [2013])

vt+1 = µvt − η∇Jθ (θt + µvt)

θt+1 = θt + vt+1,
(5)

µ: as in Momentum

Haobin Tan – The Gradient Descent Optimization Algorithms21 / 41

Nesterov Momentum vs. Momentum

Momentum
computes gradient at current
position

Nesterov momentum
computes gradient at
“lookahead” position

Haobin Tan – The Gradient Descent Optimization Algorithms22 / 41

AdaGrad

Adaptive Gradient Algorithm

AdaGrad (Duchi et al. [2011])

θt+1 = θt −
η√

Gt + ε
· gt (6)

gt : gradient of the loss function J(θ) w.r.t the parameter θ at step t

ε: smoothing item, aims to prevent division by 0 (usually 10−7)

Division and square root: element-wise operation

Gt =

∑t

τ=1 g2
τ,1 0 · · · 0

0
∑t

τ=1 g2
τ,2 · · · 0

...
...

. . .
...

0 0 · · ·
∑t

τ=1 g2
τ,d

 ∈ Rd×d

Haobin Tan – The Gradient Descent Optimization Algorithms23 / 41

AdaGrad

AdaGrad (Duchi et al. [2011])

θt+1 = θt −
η√

Gt + ε
· gt (6)

Each parameter θi is updated with different learning rate, depending
on the past gradients (Gt)

Large updates for infrequent parameters
Small updates for frequent parameters

Haobin Tan – The Gradient Descent Optimization Algorithms23 / 41

AdaGrad

AdaGrad (Duchi et al. [2011])

θt+1 = θt −
η√

Gt + ε
· gt (6)

Each parameter θi is updated with different learning rate, depending
on the past gradients (Gt)

Large updates for infrequent parameters
Small updates for frequent parameters

→ adaptive

Haobin Tan – The Gradient Descent Optimization Algorithms23 / 41

AdaGrad

AdaGrad (Duchi et al. [2011])

θt+1 = θt −
η√

Gt + ε
· gt (6)

Pros
Lesser need to manually tune learning rate
Suitable for sparse data
Improve robustness

Cons
Continual shrinking of learning rate
Still need to manually select a global learning rate

Haobin Tan – The Gradient Descent Optimization Algorithms23 / 41

Adadelta

Proposed by Zeiler [2012]

Extension of AdaGrad
Improve upon two main disadvantages of AdaGrad

Continual shrinking of learning rate throughout training
Necessity of a manually selected global learning rate

Haobin Tan – The Gradient Descent Optimization Algorithms24 / 41

Adadelta: Accumulate over window
AdaGrad: accumulates all previous squared gradients

Adadelta: restricts the window of past accumulated squared
gradients to a fixed size

Approximated with Exponentially Weighted Moving Average (EWMA):

E
[
g2]

t
= µE

[
g2]

t−1
+ (1− µ)g2

t , µ ∈ [0, 1) (7)

Replace Gt in AdaGrad (Equation (6)):

∆θt = − η√
E [g2]t + ε

· gt (8)

Denominator is Root Mean Square (RMS) of the gradient:

RMS[g]t =
√

E [g2]t + ε (9)

Finally
∆θt = − η

RMS[g]t
· gt (10)

Haobin Tan – The Gradient Descent Optimization Algorithms25 / 41

Adadelta: Accumulate over window
AdaGrad: accumulates all previous squared gradients
Adadelta: restricts the window of past accumulated squared
gradients to a fixed size

Approximated with Exponentially Weighted Moving Average (EWMA):

E
[
g2]

t
= µE

[
g2]

t−1
+ (1− µ)g2

t , µ ∈ [0, 1) (7)

Replace Gt in AdaGrad (Equation (6)):

∆θt = − η√
E [g2]t + ε

· gt (8)

Denominator is Root Mean Square (RMS) of the gradient:

RMS[g]t =
√

E [g2]t + ε (9)

Finally
∆θt = − η

RMS[g]t
· gt (10)

Haobin Tan – The Gradient Descent Optimization Algorithms25 / 41

Adadelta: Accumulate over window
AdaGrad: accumulates all previous squared gradients
Adadelta: restricts the window of past accumulated squared
gradients to a fixed size

Approximated with Exponentially Weighted Moving Average (EWMA):

E
[
g2]

t
= µE

[
g2]

t−1
+ (1− µ)g2

t , µ ∈ [0, 1) (7)

Replace Gt in AdaGrad (Equation (6)):

∆θt = − η√
E [g2]t + ε

· gt (8)

Denominator is Root Mean Square (RMS) of the gradient:

RMS[g]t =
√

E [g2]t + ε (9)

Finally
∆θt = − η

RMS[g]t
· gt (10)

Haobin Tan – The Gradient Descent Optimization Algorithms25 / 41

Adadelta: Accumulate over window
AdaGrad: accumulates all previous squared gradients
Adadelta: restricts the window of past accumulated squared
gradients to a fixed size

Approximated with Exponentially Weighted Moving Average (EWMA):

E
[
g2]

t
= µE

[
g2]

t−1
+ (1− µ)g2

t , µ ∈ [0, 1) (7)

Replace Gt in AdaGrad (Equation (6)):

∆θt = − η√
E [g2]t + ε

· gt (8)

Denominator is Root Mean Square (RMS) of the gradient:

RMS[g]t =
√

E [g2]t + ε (9)

Finally
∆θt = − η

RMS[g]t
· gt (10)

Haobin Tan – The Gradient Descent Optimization Algorithms25 / 41

Adadelta: Accumulate over window
AdaGrad: accumulates all previous squared gradients
Adadelta: restricts the window of past accumulated squared
gradients to a fixed size

Approximated with Exponentially Weighted Moving Average (EWMA):

E
[
g2]

t
= µE

[
g2]

t−1
+ (1− µ)g2

t , µ ∈ [0, 1) (7)

Replace Gt in AdaGrad (Equation (6)):

∆θt = − η√
E [g2]t + ε

· gt (8)

Denominator is Root Mean Square (RMS) of the gradient:

RMS[g]t =
√

E [g2]t + ε (9)

Finally
∆θt = − η

RMS[g]t
· gt (10)

Haobin Tan – The Gradient Descent Optimization Algorithms25 / 41

Adadelta: Accumulate over window
AdaGrad: accumulates all previous squared gradients
Adadelta: restricts the window of past accumulated squared
gradients to a fixed size

Approximated with Exponentially Weighted Moving Average (EWMA):

E
[
g2]

t
= µE

[
g2]

t−1
+ (1− µ)g2

t , µ ∈ [0, 1) (7)

Replace Gt in AdaGrad (Equation (6)):

∆θt = − η√
E [g2]t + ε

· gt (8)

Denominator is Root Mean Square (RMS) of the gradient:

RMS[g]t =
√

E [g2]t + ε (9)

Finally
∆θt = − η

RMS[g]t
· gt (10)

Haobin Tan – The Gradient Descent Optimization Algorithms25 / 41

Adadelta: Correct units with Hessian
approximation

Update rule of gradient descent:

θt+1 = θt − η∇θJ(θt)

= θt − η · gt

Newton’s method:

θt+1 = θt − D2J(θt)
−1∇θJ(θt)

= θt − H(J(θt))−1 · gt
(11)

Haobin Tan – The Gradient Descent Optimization Algorithms26 / 41

Adadelta: Correct units with Hessian
approximation

Update rule of gradient descent:

θt+1 = θt − η∇θJ(θt)

= θt − η · gt

Newton’s method:

θt+1 = θt − D2J(θt)
−1∇θJ(θt)

= θt − H(J(θt))−1 · gt
(11)

→ H(J(θt))−1 as “automatically adaptive” learning rate

Haobin Tan – The Gradient Descent Optimization Algorithms26 / 41

Adadelta: Correct Units with Hessian
Approximation

How to compute H(J(θt))−1?

Diagonal approximation to the Hessian proposed by Becker et al.
[1988]:

(12)

Ht := H(J(θt))
diag(Ht): diagonal Hessian
µ: Smoothing item, aims to prevent division by 0

Haobin Tan – The Gradient Descent Optimization Algorithms27 / 41

Adadelta: Correct Units with Hessian
Approximation

How to compute H(J(θt))−1?

Diagonal approximation to the Hessian proposed by Becker et al.
[1988]:

∆θt = − 1
|diag(Ht)|+ µ

gt (12)

Ht := H(J(θt))
diag(Ht): diagonal Hessian
µ: Smoothing item, aims to prevent division by 0

Haobin Tan – The Gradient Descent Optimization Algorithms27 / 41

Adadelta: Correct Units with Hessian
Approximation

How to compute H(J(θt))−1?

Diagonal approximation to the Hessian proposed by Becker et al.
[1988]:

∆θt = − 1
Ht

gt (12)

Ht := H(J(θt))
diag(Ht): diagonal Hessian
µ: Smoothing item, aims to prevent division by 0

Haobin Tan – The Gradient Descent Optimization Algorithms27 / 41

Adadelta: Correct units with Hessian
approximation

(Assuming a diagonal Hessian):

H−1
t ≈ 1

Ht
=

1
∂2J
∂θ2

t

(13)

Rearrange Newton’s method:

∆θt ≈
gt

Ht
=

∂J
∂θt

∂2J
∂θ2

t

(14)

⇒ 1
∂2J
∂θ2

t

=
∆θt
∂J
∂θt

(15)

Haobin Tan – The Gradient Descent Optimization Algorithms28 / 41

Adadelta: Correct units with Hessian
approximation

(Assuming a diagonal Hessian):

H−1
t ≈ 1

Ht
=

1
∂2J
∂θ2

t

(13)

Rearrange Newton’s method:

∆θt ≈
gt

Ht
=

∂J
∂θt

∂2J
∂θ2

t

(14)

⇒ 1
∂2J
∂θ2

t

=
∆θt
∂J
∂θt

(15)

Haobin Tan – The Gradient Descent Optimization Algorithms28 / 41

Adadelta: Correct Units with Hessian
Approximation

1
∂2J
∂θ2

t

=
∆θt
∂J
∂θt

Haobin Tan – The Gradient Descent Optimization Algorithms29 / 41

Adadelta: Correct Units with Hessian
Approximation

1
∂2J
∂θ2

t

=
∆θt
∂J
∂θt

Estimate ∂J
∂θt

with EWMA of the previous gradient:

∂J
∂θt
≈ RMS[g]t

Haobin Tan – The Gradient Descent Optimization Algorithms29 / 41

Adadelta: Correct Units with Hessian
Approximation

1
∂2J
∂θ2

t

=
∆θt

RMS[g]t

Haobin Tan – The Gradient Descent Optimization Algorithms29 / 41

Adadelta: Correct Units with Hessian
Approximation

1
∂2J
∂θ2

t

=
∆θt

RMS[g]t

Estimate ∆θt with EWMA of the previous ∆θ (assuming the
curvature is locally smooth):

E
[
∆θ2]

t−1 = µE
[
∆θ2]

t−2 + (1− µ)∆θ2
t−1

RMS[∆θ]t−1 =
√

E [∆θ2]t−1 + ε

∆θt ≈ RMS[∆θ]t−1

Haobin Tan – The Gradient Descent Optimization Algorithms29 / 41

Adadelta: Correct Units with Hessian
Approximation

1
∂2J
∂θ2

t

=
RMS[∆θ]t−1

RMS[g]t
(16)

Haobin Tan – The Gradient Descent Optimization Algorithms29 / 41

Adadelta: Update Rule

θt+1 = θt − H−1
t gt

(13)
≈ θt −

1
Ht

gt

(16)
=

RMS[∆θ]t−1

RMS[g]t
gt

Adadelta (Zeiler [2012])

θt+1 = θt −
RMS[∆θ]t−1

RMS[g]t
gt (17)

Haobin Tan – The Gradient Descent Optimization Algorithms30 / 41

RMSprop

Unpublished optimization algorithm

Proposed by Geoff Hinton in his Coursera course1

RMSprop

E
[
g2]

t = µE
[
g2]

t−1 + (1− µ)g2
t

θt+1 = θt −
η√

E [g2]t + ε
· gt

(9)
= θt −

η

RMS[g]t
· gt

(18)

µ: Decaying hyperparameter (typically 0.9)

ε: Smoothing item, aims to prevent division by 0

Good default value for η: 0.001

1www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Haobin Tan – The Gradient Descent Optimization Algorithms31 / 41

www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Adam

Adaptive Moment Estimation

Combination of Momentum and RMSprop

Haobin Tan – The Gradient Descent Optimization Algorithms32 / 41

Adam

Adaptive Moment Estimation

Combination of Momentum and RMSprop

Haobin Tan – The Gradient Descent Optimization Algorithms32 / 41

Adam

Adaptive Moment Estimation
Combination of Momentum and RMSprop

Stores moving average of past gradients (like Momentum)

mt = β1mt−1 + (1− β1) gt (19)

mt : first moment (mean) of gradients
β1: decaying rate (default: 0.9)

Stores moving average of past squared gradients (like RMSprop)

vt = β2vt−1 + (1− β2) g2
t (20)

vt : second moment (uncentered variance) of gradients
β2: decaying rate (default: 0.999)

Haobin Tan – The Gradient Descent Optimization Algorithms32 / 41

Adam

Adaptive Moment Estimation
Combination of Momentum and RMSprop

Stores moving average of past gradients (like Momentum)

mt = β1mt−1 + (1− β1) gt (19)

mt : first moment (mean) of gradients
β1: decaying rate (default: 0.9)

Stores moving average of past squared gradients (like RMSprop)

vt = β2vt−1 + (1− β2) g2
t (20)

vt : second moment (uncentered variance) of gradients
β2: decaying rate (default: 0.999)

Haobin Tan – The Gradient Descent Optimization Algorithms32 / 41

Adam: Bias correction

mt and vt are initialized as 0-vectors. → biased towards 0 at the
beginning

Bias correction:

m̂t =
mt

1− βt
1

(21)

v̂t =
vt

1− βt
2

(22)

Haobin Tan – The Gradient Descent Optimization Algorithms33 / 41

Adam: Bias correction

mt and vt are initialized as 0-vectors. → biased towards 0 at the
beginning

Bias correction:

m̂t =
mt

1− βt
1

(21)

v̂t =
vt

1− βt
2

(22)

Haobin Tan – The Gradient Descent Optimization Algorithms33 / 41

Adam: Update rule

Adam (Kingma and Ba [2014])

θt+1 = θt −
η√

v̂t + ε
m̂t (23)

ε: Smoothing item, aims to prevent division by 0 (default: 10−8)

Haobin Tan – The Gradient Descent Optimization Algorithms34 / 41

Adam

Figure: Source: Kingma and Ba [2014]

Haobin Tan – The Gradient Descent Optimization Algorithms35 / 41

Summary

Algorithm Update rule

Vanilla gradient descent
gt = ∇θJ(θt)

∆θt = −ηgt

Momentum ∆θt = µvt − ηgt

Nesterov Momentum ∆θt = vt+1 = µvt − η∇Jθ (θt + µvt)

AdaGrad ∆θt = − η√
Gt +ε

· gt

Adadelta ∆θt = −RMS[∆θ]t−1
RMS[g]t

gt

RMSprop ∆θt = η
RMS[g]t

· gt

Adam ∆θt = − η√
v̂t +ε

m̂t

Table: Optimization algorithms summary

Haobin Tan – The Gradient Descent Optimization Algorithms36 / 41

Optimizer selection

Which algorithm should we choose?

No consensus on this point

Seems to be heavily reliant on the practitioner’s familiarity with the
algorithm

Haobin Tan – The Gradient Descent Optimization Algorithms37 / 41

Optimizer selection

Which algorithm should we choose?

No consensus on this point

Seems to be heavily reliant on the practitioner’s familiarity with the
algorithm

Haobin Tan – The Gradient Descent Optimization Algorithms37 / 41

Optimizer selection: Suggestions

The most popular optimization algorithms actively in use:
SGD
SGD with momentum
RMSprop
RMSprop with momentum
Adadelta
Adam

Adaptive learning rate methods (AdaGrad, Adadelta, RMSprop,
Adam) have fairly robust performance

Adam is slightly better than RMSprop

Input data is sparse→ Adaptive learning rate methods

Care about fast convergence and train a deep or complex neural
network→ Prefer adaptive learning rate methods

Haobin Tan – The Gradient Descent Optimization Algorithms38 / 41

Thanks for your attention!

Haobin Tan – The Gradient Descent Optimization Algorithms39 / 41

Reference I

Sue Becker, Yann Le Cun, et al. Improving the convergence of
back-propagation learning with second order methods. In Proceedings
of the 1988 connectionist models summer school, pages 29–37, 1988.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
Machine Learning Research, 12(Jul):2121–2159, 2011.

Aurélien Géron. Hands-on machine learning with Scikit-Learn and
TensorFlow: concepts, tools, and techniques to build intelligent
systems. ” O’Reilly Media, Inc.”, 2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Haobin Tan – The Gradient Descent Optimization Algorithms40 / 41

Reference II

Andrew Ng. Cs229 lecture notes. CS229 Lecture notes, 1(1):1–3, 2000.

Sebastian Ruder. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747, 2016.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On
the importance of initialization and momentum in deep learning. In
International conference on machine learning, pages 1139–1147, 2013.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

Haobin Tan – The Gradient Descent Optimization Algorithms41 / 41

Appendix

Haobin Tan – The Gradient Descent Optimization Algorithms1 / 14

Table of Contents

4 Exponentially Weighted Moving Average

5 Adadelta: Correct Units with Hessian Approximation (Another Aspect)

6 Newton’s Method for Optimization

7 AdaGrad: Put More Weight on Rare Features

Haobin Tan – The Gradient Descent Optimization Algorithms2 / 14

Exponentially Weighted Moving Average

Exponentially Weighted Moving Average (EWMA)

St =

{
0 t = 0

βSt−1 + (1− β)Yt t > 0
(24)

β ∈ [0, 1): Degree of weighting decrease

Yt : Real measurement value

St : Weighted average value

Haobin Tan – The Gradient Descent Optimization Algorithms3 / 14

Exponentially Weighted Moving Average

Exponentially Weighted Moving Average (EWMA)

St =

{
0 t = 0

βSt−1 + (1− β)Yt t > 0
(24)

β ∈ [0, 1): Degree of weighting decrease

Yt : Real measurement value
St : Weighted average value

Approximately averaging over about 1
1−β timestamps values

β = 0.9 ≡ 10 previous timestamps

β = 0.98 ≡ 50 previous timestamps

Haobin Tan – The Gradient Descent Optimization Algorithms3 / 14

Exponentially Weighted Moving Average

Exponentially Weighted Moving Average (EWMA)

St =

{
0 t = 0

βSt−1 + (1− β)Yt t > 0
(24)

β ∈ [0, 1): Degree of weighting decrease

Yt : Real measurement value
St : Weighted average value

Approximately averaging over about 1
1−β timestamps values

β = 0.9 ≡ 10 previous timestamps
β = 0.98 ≡ 50 previous timestamps

Haobin Tan – The Gradient Descent Optimization Algorithms3 / 14

Exponentially Weighted Moving Average

Exponentially Weighted Moving Average (EWMA)

St =

{
0 t = 0

βSt−1 + (1− β)Yt t > 0
(24)

Smoothing
Greater β: Adapts more slowly to changes→ smoother
Smaller β: Adapts more quickly to changes→ noiser, more
outliners

Haobin Tan – The Gradient Descent Optimization Algorithms3 / 14

Exponentially Weighted Moving Average

Figure: Source: Deep Learning Specialization

β = 0.9

β = 0.98

β = 0.5

Haobin Tan – The Gradient Descent Optimization Algorithms4 / 14

https://www.coursera.org/learn/deep-neural-network?specialization=deep-learning

Exponentially Weighted Moving Average

Figure: Source: Deep Learning Specialization

β = 0.9

β = 0.98

β = 0.5

Haobin Tan – The Gradient Descent Optimization Algorithms4 / 14

https://www.coursera.org/learn/deep-neural-network?specialization=deep-learning

Exponentially Weighted Moving Average

Figure: Source: Deep Learning Specialization

β = 0.9

β = 0.98

β = 0.5

Haobin Tan – The Gradient Descent Optimization Algorithms4 / 14

https://www.coursera.org/learn/deep-neural-network?specialization=deep-learning

Exponentially Weighted Moving Average

Bias towards 0 at the beginning

Bias correction:

Exponentially Weighted Moving Average (EWMA) with bias
correction

vt =
βvt−1 + (1− β)θt

1− βt (25)

Haobin Tan – The Gradient Descent Optimization Algorithms5 / 14

Exponentially Weighted Moving Average

Bias towards 0 at the beginning

Bias correction:

Exponentially Weighted Moving Average (EWMA) with bias
correction

vt =
βvt−1 + (1− β)θt

1− βt (25)

Haobin Tan – The Gradient Descent Optimization Algorithms5 / 14

Exponentially Weighted Moving Average

Bias towards 0 at the beginning

Bias correction:

Exponentially Weighted Moving Average (EWMA) with bias
correction

vt =
βvt−1 + (1− β)θt

1− βt (25)

Haobin Tan – The Gradient Descent Optimization Algorithms5 / 14

Table of Contents

4 Exponentially Weighted Moving Average

5 Adadelta: Correct Units with Hessian Approximation (Another Aspect)

6 Newton’s Method for Optimization

7 AdaGrad: Put More Weight on Rare Features

Haobin Tan – The Gradient Descent Optimization Algorithms6 / 14

Problem of Units

At each update, we apply ∆θ to θ

Unit of θ and ∆θ should match

The units in first-order methods relate to the gradient, not the
parameter (assuming unitless J(θ)):

units of ∆θ ∝ units of g ∝ ∂J
∂θ
∝ 1

units of θ

Second-order methods have the correct units for the parameter
updates:

units of ∆θ ∝ H−1g ∝
∂J
∂θ
∂2J
∂θ2

∝ units of θ

Haobin Tan – The Gradient Descent Optimization Algorithms7 / 14

Problem of Units

At each update, we apply ∆θ to θ

Unit of θ and ∆θ should match

The units in first-order methods relate to the gradient, not the
parameter (assuming unitless J(θ)):

units of ∆θ ∝ units of g ∝ ∂J
∂θ
∝ 1

units of θ

Second-order methods have the correct units for the parameter
updates:

units of ∆θ ∝ H−1g ∝
∂J
∂θ
∂2J
∂θ2

∝ units of θ

Haobin Tan – The Gradient Descent Optimization Algorithms7 / 14

Problem of Units

At each update, we apply ∆θ to θ

Unit of θ and ∆θ should match

The units in first-order methods relate to the gradient, not the
parameter (assuming unitless J(θ)):

units of ∆θ ∝ units of g ∝ ∂J
∂θ
∝ 1

units of θ

Second-order methods have the correct units for the parameter
updates:

units of ∆θ ∝ H−1g ∝
∂J
∂θ
∂2J
∂θ2

∝ units of θ

Haobin Tan – The Gradient Descent Optimization Algorithms7 / 14

Problem of Units

At each update, we apply ∆θ to θ

Unit of θ and ∆θ should match

The units in first-order methods relate to the gradient, not the
parameter (assuming unitless J(θ)):

units of ∆θ ∝ units of g ∝ ∂J
∂θ
∝ 1

units of θ

Second-order methods have the correct units for the parameter
updates:

units of ∆θ ∝ H−1g ∝
∂J
∂θ
∂2J
∂θ2

∝ units of θ

Haobin Tan – The Gradient Descent Optimization Algorithms7 / 14

Adadelta: Ensures Correct Units

Recall: After accumulating over window, we have Equation (10):

∆θt = − η

RMS[g]t
· gt

In order to maintain the correct units, we need to replace η with a
quantity proportional to ∆θt

Estimate ∆θt with RMS[∆θ]t−1 (assuming locally smooth curvature)

Update rule of Adadelta:

θt+1 = θt −
RMS[∆θ]t−1

RMS[g]t
gt

Haobin Tan – The Gradient Descent Optimization Algorithms8 / 14

Adadelta: Ensures Correct Units

Recall: After accumulating over window, we have Equation (10):

∆θt = − η

RMS[g]t
· gt

In order to maintain the correct units, we need to replace η with a
quantity proportional to ∆θt

Estimate ∆θt with RMS[∆θ]t−1 (assuming locally smooth curvature)

Update rule of Adadelta:

θt+1 = θt −
RMS[∆θ]t−1

RMS[g]t
gt

Haobin Tan – The Gradient Descent Optimization Algorithms8 / 14

Adadelta: Ensures Correct Units

Recall: After accumulating over window, we have Equation (10):

∆θt = − η

RMS[g]t
· gt

In order to maintain the correct units, we need to replace η with a
quantity proportional to ∆θt

Estimate ∆θt with RMS[∆θ]t−1 (assuming locally smooth curvature)

Update rule of Adadelta:

θt+1 = θt −
RMS[∆θ]t−1

RMS[g]t
gt

Haobin Tan – The Gradient Descent Optimization Algorithms8 / 14

Adadelta: Ensures Correct Units

Recall: After accumulating over window, we have Equation (10):

∆θt = − η

RMS[g]t
· gt

In order to maintain the correct units, we need to replace η with a
quantity proportional to ∆θt

Estimate ∆θt with RMS[∆θ]t−1 (assuming locally smooth curvature)

Update rule of Adadelta:

θt+1 = θt −
RMS[∆θ]t−1

RMS[g]t
gt

Haobin Tan – The Gradient Descent Optimization Algorithms8 / 14

Table of Contents

4 Exponentially Weighted Moving Average

5 Adadelta: Correct Units with Hessian Approximation (Another Aspect)

6 Newton’s Method for Optimization

7 AdaGrad: Put More Weight on Rare Features

Haobin Tan – The Gradient Descent Optimization Algorithms9 / 14

Newton’s Method for Optimization
Univariate:

xt+1 = xt −
f ′ (xt)

f ′′ (xt)
(26)

Multivariate:
xt+1 = xt − [H(f (xt))]−1∇f (xt) (27)

Figure: Source: Taylor Series approximation, newton’s method and optimization

Haobin Tan – The Gradient Descent Optimization Algorithms10 / 14

https://suzyahyah.github.io/calculus/optimization/2018/04/06/Taylor-Series-Newtons-Method.html

Newton’s Method for Optimization
Univariate:

xt+1 = xt −
f ′ (xt)

f ′′ (xt)
(26)

Multivariate:
xt+1 = xt − [H(f (xt))]−1∇f (xt) (27)

Figure: Source: Taylor Series approximation, newton’s method and optimization

Haobin Tan – The Gradient Descent Optimization Algorithms10 / 14

https://suzyahyah.github.io/calculus/optimization/2018/04/06/Taylor-Series-Newtons-Method.html

Newton’s Method Derivation

Taylor series approximation

f (xt+1) = f (xt + ∆x) ≈ f (xt) + f ′ (xt) ∆x +
1
2

f ′′ (xt) ∆x2

Find ∆x such that (xp + ∆x) is the solution to minimizing the
equation

Haobin Tan – The Gradient Descent Optimization Algorithms11 / 14

Newton’s Method Derivation

Taylor series approximation

f (xt+1) = f (xt + ∆x) ≈ f (xt) + f ′ (xt) ∆x +
1
2

f ′′ (xt) ∆x2

Find ∆x such that (xp + ∆x) is the solution to minimizing the
equation

Haobin Tan – The Gradient Descent Optimization Algorithms11 / 14

Newton’s Method Derivation

Taylor series approximation

f (xt+1) = f (xt + ∆x) ≈ f (xt) + f ′ (xt) ∆x +
1
2

f ′′ (xt) ∆x2

Find ∆x such that (xp + ∆x) is the solution to minimizing the
equation

d
d∆x

(
f (xt) + f ′ (xt) ∆x +

1
2

f ′′ (xt) ∆x2
)

!
= 0

f ′ (x) + f ′′ (xt) ∆x
!

= 0

∆x = − f ′ (xt)

f ′′ (xt)

Haobin Tan – The Gradient Descent Optimization Algorithms11 / 14

Newton’s Method Derivation
Taylor series approximation

f (xt+1) = f (xt + ∆x) ≈ f (xt) + f ′ (xt) ∆x +
1
2

f ′′ (xt) ∆x2

Find ∆x such that (xp + ∆x) is the solution to minimizing the
equation

d
d∆x

(
f (xt) + f ′ (xt) ∆x +

1
2

f ′′ (xt) ∆x2
)

!
= 0

f ′ (x) + f ′′ (xt) ∆x
!

= 0

∆x = − f ′ (xt)

f ′′ (xt)

Multivariate:
∆x = − [H(f (xt))]−1∇f (xt)

Haobin Tan – The Gradient Descent Optimization Algorithms11 / 14

Table of Contents

4 Exponentially Weighted Moving Average

5 Adadelta: Correct Units with Hessian Approximation (Another Aspect)

6 Newton’s Method for Optimization

7 AdaGrad: Put More Weight on Rare Features

Haobin Tan – The Gradient Descent Optimization Algorithms12 / 14

Sparse Data Examples

xt,1 xt,2 xt,3 yt

1 0 0 1
0.5 0 1 -1
-0.5 1 0 1
0 0 0 -1
0.5 0 0 1
1 0 0 -1
-1 1 0 1
-0.5 0 1 -1

Frequent, irrelevant

Infrequent, predictive

Infrequent, predictive

Haobin Tan – The Gradient Descent Optimization Algorithms13 / 14

Sparse Data Examples

Figure: Source: Machine Learning 2

2https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/

Haobin Tan – The Gradient Descent Optimization Algorithms14 / 14

https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/

	Gradient Descent Variants
	Batch Gradient Descent
	Stochastic Gradient Descent
	Mini-batch Gradient Descent
	Comparison and Trade-offs

	Challenges of Gradient Descents
	Choosing the Proper Learning Rate
	Non-convex loss function

	Gradient Descent Optimization Algorithms
	Momentum
	Nesterov Momentum
	Adagrad
	Adadelta
	RMSprop
	Adam
	Optimizer selection

	References
	Appendix
	Exponentially Weighted Moving Average
	Adadelta: Correct Units with Hessian Approximation (Another Aspect)
	Newton's Method for Optimization
	AdaGrad: Put More Weight on Rare Features

