
The Gradient Descent Optimization Algorithms

Haobin Tan

Institute for Anthropomatics and Robotics,
Karlsruhe Institute of Technology

haobin.tan@student.kit.edu

Abstract
Gradient descent is one of the most important algorithms

in machine learning and deep learning. In this paper, we first
take a look at different variants of gradient descent. Address-
ing the problems that may occur during applying gradient
descent, we introduce a number of practical optimization al-
gorithms. Last but not least, we also give some empirical
suggestions for the selection of gradient descent optimiza-
tion algorithms.

1. Introduction
Most machine learning and deep learning algorithms involve
optimization of some sort. It is the task of minimizing the
model’s loss function (or cost function) parameterized by the
model’s parameters. One of the most popular strategies to
solve this minimization task is gradient descent algorithms.

This paper attempts to review different types of gradi-
ent descent and algorithms for optimizing gradient descent.
In section 2, we initially introduce the gradient descent al-
gorithm and its variants: Batch Gradient Descent (BGD),
Stochastic Gradient Descent (SGD), and Mini-Batch Gradi-
ent Descent (MBGD). In section 3, two main challenges of
gradient descent, choosing a proper learning rate and non-
convex loss function, will be then summarized. In order to
deal with these challenges, section 4 outlines some optimiza-
tion algorithms: Momentum, Nesterov Momentum, Adap-
tive Gradient Algorithm (AdaGrad), Adadelta, RMSprop,
and Adaptive Moment Estimation (Adam). They are able to
improve the performance of gradient descent and therefore
widely used in deep learning community.

2. Gradient Descent Variants
As it requires information of loss function’s first derivative
to update the model’s parameters, gradient descent is a first-
order optimization algorithm for finding the minimum of the
loss function J(θ). It iteratively updates the parameters θ in
the opposite direction of the gradient∇θJ(θ) with respect to
the parameters θ ∈ Rd. The hyperparameter, learning rate η,
determines the step size at each update while moving along
the aforementioned direction [2].

There’re three variants of gradient descent, which are de-
fined on the basis of how much data we use to compute the

gradient ∇θJ(θ) at each update iteration. Depending upon
the amount of data used per update, the required time and
accuracy of the algorithms differ from each other.

2.1. Batch Gradient Descent

Batch Gradient Descent (BGD) computes the gradient of the
cost function with respect to the parameters with the whole
training dataset [1]:

θ = θ − η · ∇θJ(θ) (1)

Training using BGD can be presented as Algorithm 1.
And the function calculate gradient, which depends
on the loss function, should be defined in advance.

Algorithm 1 Batch Gradient Descent
1: n← number of epochs
2: η ← learning rate
3: J(θ)← loss function
4: θ ← initialized parameters
5: M = {(x(i), y(i))|i = 1, . . . ,m} ← training dataset
6: function BGD(J(θ),M, η, θ)
7: for j ← 1 to n do
8: ∇θJ ← calculate gradient(J(θ),M, θ)
9: θ ← θ − η∇θJ

10: end for
11: return θ
12: end function

BGD guarantees to converge to the global minimum for
convex error surfaces and to a local minimum for non-convex
surfaces [1]. Example in Figure 1 shows how BGD con-
verges to the minimum of the basin the parameters are placed
in.

Nevertheless, training with BGD can be very slow and is
intractable for very large datasets that don’t fit in memory,
since we need to calculate the gradient based on the whole
dataset to perform just one update. Moreover, BGD doesn’t
allow us to update our model online.

2.2. Stochastic Gradient Descent

Whereas BGD takes the entire training dataset into consider-
ation before taking a single step, Stochastic Gradient Descent

Figure 1: An example of applying BGD to minimize a
quadratic loss function. The ellipses are the contours of the
loss function. Successive values of θ that BGD went through
are marked by ”×”s (joined by straight lines). (Source: [3])

(SGD) can start making progress right away, and continues
to make progress with each training example x(i) and label
y(i) it looks at [1]:

θ = θ − η · ∇θJ
(
θ;x(i); y(i)

)
(2)

Pseudocode for SGD is provided in Algorithms 2. Note
that it is necessary to shuffle the training dataset (line 8) in
order to prevent providing the training examples in a mean-
ingful order to the model since this may result in bias in the
optimization algorithm.

Algorithm 2 Stochastic Gradient Descent
1: n← number of epochs
2: η ← learning rate
3: J(θ)← loss function
4: θ ← initialized parameters
5: M = {(x(i), y(i))|i = 1, . . . ,m} ← training dataset
6: function SGD(J(θ),M, η, θ)
7: for j ← 1 to n do
8: Shuffle M
9: for k ← 1 to m do

10: ∇θJ ← calculate gradient(J(θ), (x(k), y(k)), θ)
11: θ ← θ − η∇θJ
12: end for
13: end for
14: return θ
15: end function

As SGD evaluates the gradient ∇θJ(θ) and updates pa-
rameters θ with only one single training example at a time,
it is usually much faster than BGD and can also be used to
learn online [1]. On the other hand, due to frequent updates
with a high variance, the objective function may sometimes
fluctuate heavily (Figure 2).

Furthermore, SGD’s fluctuation complicates conver-
gence to the exact minimum, as SGD will keep overshooting

Figure 2: SGD fluctuation (Source: [1])

[1]. Due to its stochastic (i.e., random) nature, SGD is much
less regular than BGD: the parameters θ will keep oscillating
around the minimum of J(θ) [3] (Figure 3). Nonetheless, in
practice, most of the values near the minimum can be rea-
sonably considered as good approximations to the true min-
imum. Additionally, with the help of simulated annealing,
which slowly decreases the learning rate, SGD almost con-
verges to a local or the global minimum for non-convex and
convex optimization respectively. For these reasons, when
the training set is large, SGD is often preferred over BGD
[3].

Figure 3: SGD vs. BGD (Source: https://wikidocs.net/3413)

2.3. Mini-batch Gradient Descent

At each step, instead of evaluating the gradients on the base
of the full training set (as in BGD) or based on just one
training example (as in SGD), Mini-Batch Gradient Descent
(MBGD) performs an update for small random sets of train-
ing examples [1]:

θ = θ − η · ∇θJ
(
θ;x(i:i+b); y(i:i+b)

)
(3)

The algorithm is described in pseudocode in Algorithm
3. Note that in line 10 the pre-defined function get batch

returns a set of mini-batches based on the mini-batch size.
The size usually ranges between 50 and 256, but can vary
depending on different applications.

Algorithm 3 Mini-Batch Gradient Descent
1: n← number of epochs
2: η ← learning rate
3: J(θ)← loss function
4: θ ← initialized parameters
5: M = {(x(i), y(i))|i = 1, . . . ,m} ← training dataset
6: b← batch size
7: function MBGD(J(θ),M, η, θ)
8: for j ← 1 to n do
9: Shuffle M

10: B = {Bl|l = 1, . . . ,
⌊
m
b

⌋
} ← get batch(M, b)

11: for k ← 1 to l do
12: ∇θJ ← calculate gradient(J(θ), Bk, θ)
13: θ ← θ − η∇θJ
14: end for
15: end for
16: return θ
17: end function

The main advantage of MBGD is that it reduces the vari-
ance of the parameter updates, which can lead to more stable
convergence [1]. Another benefit of MBGD over SGD is
that we can achieve a performance boost from hardware op-
timization of matrix operations, especially when using GPUs
[4].

2.4. Comparison and Trade-offs

Table 1 summarizes the difference and trade-offs between
BGD, SGD, and MBGD. Furthermore, Figure 4 visualizes
the comparison by showing the paths taken by three gradient
descent algorithms in parameter space θ ∈ R2 during train-
ing. All algorithms end up near the minimum, but the path
of BGD actually stops right at the minimum, while SGD and
MBGD continue to walk around. In addition, the oscillation
of MBGD is obviously smaller than SGD.

Method Accuracy Update
Speed

Memory
Usage

Online
Learning

BGD very good slow high no

SGD
good
(with annealing) high low yes

MBGD good medium medium yes

Table 1: Comparison and trade-offs between gradient de-
scent variants

3. Challenges of Gradient Descents
During applying (vanilla) gradient descent, a few challenges,
which may be detrimental to performance, need to be ad-

Figure 4: Comparison between gradient descent variants
(Source: [4])

dressed.

3.1. Learning Rate

A common challenge of gradient descent is to choose the
proper learning rate η. As shown in Figure 5, a learning rate
that is too small (like λ0) can result in slow convergence and
learning, while a learning rate that is too large can hinder
convergence and lead to bouncing around the minimum (λ2)
or even to diverge (λ3). Optimization algorithms aiming to
handle this issue will be discussed in Section 4.3, 4.4, 4.5,
and 4.6.

Figure 5: Effect of different learning rate on gradient descent
(Source: https://blog.yani.io/sgd/)

3.2. Non-convex Loss function

Another typical challenge is highly non-convex loss func-
tions, which are usually used in neural networks. Due to
non-convexity, numerical suboptimal local minima can be
a serious problem during training (Figure 6). Furthermore,
difficulty also results from saddle points [7]. Such saddle
points are commonly surrounded by a plateau of the same er-
ror. Since the gradient in all dimensions is close to zero, it
is problematic for gradient descent to escapse [7]. Possible
solutions for this challenge are described in Section 4.1 and
4.2.

Figure 6: Problem caused by non-convex loss function. The
loss function stucks in local minima and thus can not get to
the global minima. (Source: Non-convex optimization)

4. Gradient Descent Optimization Algorithms
The update of parameters at each iteration consists of two
parts: gradient and learning rate. We can consider the gra-
dient as the update step direction and the learning rate as
the update step size. Therefore, there’re two perspectives to
optimize gradient descent algorithm. Momentum and Nes-
terov Momentum aims to improve gradient descent from the
perspective of the update step direction. Adaptive learning
rate methods, including AdaGrad, Adadelta, RMSprop, and
Adam, devote themselves to optimize the update step size.

4.1. Momentum

Motivating from a physical perspective of the optimization
problem, momentum algorithms [5] is designed to accelerate
learning and dampens oscillations (Figure 7). It takes the
gradient from previous steps into account, accumulates an
exponentially decaying moving average of past gradients and
continues to move in their direction [6]:

vt+1 = µvt − η∇θJ(θt)

θt+1 = θt + vt+1,
(4)

where

• µ ∈ [0, 1): momentum coefficient (hyperparameter),
damps the velocity and reduces the kinetic energy of
the system. From a physical perspective, it can be con-
sidered as the coefficient of friction. The typical value
of µ used in practice is 0.9.

• v: velocity, the direction and speed at which the pa-
rameters move through parameter space. [6].

Figure 8 shows the momentum update at t-th step.

4.2. Nesterov Momentum

Motivated by Nesterov Accelerated Gradient (NAG) [8], a
slight variant of the momentum algorithm (Section 4.1) was

Figure 7: The ellipses are the contours of a quadratic loss
function with a poorly conditioned Hessian matrix, whose
shape looks like a long, narrow valley or canyon with steep
sides. The black arrows indicate the step that (vanilla) gradi-
ent descent will take at that point. The red path is the path of
steps applying momentum rule. While gradient steps spend
a long time oscillating across the narrow axis of the canyon,
momentum traverses the canyon lengthwise correctly and
reaches the minimum more quickly. (Source: [6])

Figure 8: Momentum update at step t

proposed. The update rules of Nesterov momentum are given
by [5]:

vt+1 = µvt − η∇Jθ (θt + µvt)

θt+1 = θt + vt+1

(5)

where µ and η play the similar role as in Equation 4.
The significant difference between Nesterov momentum

and standard momentum is the position where the gradient is
computed: while standard momentum directly evaluates the
gradient from the current position θt (see Figure 8), Nesterov
momentum computes the gradient from a ”lookahead” posi-
tion (red point in Figure 9), a point in the vicinity of where
the parameters are soon going to be.

In the convex batch gradient case, Nesterov momen-
tum brings the rate of convergence of the excess error from
O(1/k) (after k steps) toO(1/k2) as shown by [8]. Unfortu-
nately, in the stochastic gradient case, Nesterov momentum

https://www.cs.ubc.ca/labs/lci/mlrg/slides/non_convex_optimization.pdf

Figure 9: Nesterov momentum update at step t

does not improve the rate of convergence [6].

4.3. AdaGrad

Algorithms in Section 4.1 and Section 4.2 focus on adapting
the updates to the slope of the loss function and speeding up
gradient descent. Another aspect of optimization is to make
the learning rate to adapt to each parameter as well as its
gradient.

In many application of machine learning and deep learn-
ing, the input instance are often of very high dimension. But
only a few features are non-zero within some particular in-
stance. These features are infrequent and the data is thus
sparse. However, it is often the case that infrequently occur-
ing features are much more informative and discriminative.
I.e., infrequent features are usually more significant than the
frequents. For example, for Natural Language Processing
(NLP), although words like “the”, “a” occur very frequently,
they are not so important for dialog modeling.

Therefore, instead of using a fixed learning rate for all pa-
rameters, it can make more sense to adapt different learning
rates to the parameters, in order to perform larger or smaller
updates based on their importance.

One of the algorithms with adaptive learning rates is
Adaptive Gradient Algorithm (AdaGrad) [10]. At each up-
date, it individually adapts the learning rate of parameters
by scaling them inversely proportional to the square root of
the accumulated squared gradient [10]. In other words, pa-
rameters with large partial derivative of the loss have a cor-
respondingly rapid decrease in their learning rate, while pa-
rameters with small partial derivatives have a relatively small
decrease in their learning rate [6].

For the sake of brevity, we use gt to denote the gradient
of the loss function J(θ) with respect to the parameter θ at
step t:

gt =

gt,1
gt,2

...
gt,d

 =

∇θJ(θt,1)
∇θJ(θt,2)

...
∇θJ(θt,d)

 ∈ Rd×1 (6)

The update rule of AdaGrad at time step t is [10]:

θt+1 = θt −
η√

Gt + ε
· gt

∆θt = − η√
Gt + ε

· gt
(7)

where

• Gt ∈ Rd×d: a diagonal matrix where each diagonal
elementGt,ii is the sum of squares of the gradient with
respect to θi up to time step t [10], i.e.,

Gt =

∑t
τ=1 g

2
τ,1 0 · · · 0

0
∑t
τ=1 g

2
τ,2 · · · 0

...
...

. . .
...

0 0 · · ·
∑t
τ=1 g

2
τ,d

(8)

• ε: a smoothing term that aims to prevent division by
zero. Common value of ε is 10−7 [6].

• Division and square root are element-wise operation.
For clarity, we expand Equation (7):

∆θt =

∆θt,1
∆θt,2

...
∆θt,d

= −

η√

ε+Gt,11
0 ··· 0

0 η√
ε+Gt,22

··· 0

...
...

. . .
...

0 0 ··· η√
ε+Gt,dd

 gt,1
gt,2

...
gt,d

= −

η√

ε+Gt,11
gt,1

η√
ε+Gt,22

gt,2

...
η√

ε+Gt,dd
gt,d

(9)

The main benefit of AdaGrad is that the learning rate
doesn’t need to be manually tuned. Most implementation
use a default value of 0.01 [1]. What’s more, according to
Equation (8) and (9), AdaGrad performs larger updates for
infrequent and smaller updates for frequent parameters. For
this reason, it is well-suited for dealing with sparse data [1].

However, accumulation of the squared gradients from the
beginning of training in the denominator (Equation (7)) re-
sults in the problem that the learning rate keeps shrinking and
eventually become infinitesimally small [1]. At that point,
the model is almost unable to learn additional knowledge.

4.4. Adadelta

As an extension of AdaGrad (Section 4.3), Adadelta [11]
aims to improve upon the two main disadvantages:

a) continual shrinking of learning rate throughout train-
ing

b) the necessity of a manually selected global learning
rate

4.4.1. Accumulate over Window

Regarding a), instead of accumulating all previous squared
gradients, Adadelta restricts the window of past gradients
that are accumulated to be some fixed size w. This ensures
that learning keeps making progress, even after numbers of
iteration [11].

As it is not efficient to store w past squared gradients,
the accumulation of gradients is approximated with Expo-
nentially Weighted Moving Average (EWMA) [11]. At step
t, the running average E[g2]t depends only on the last aver-
age and the current gradient [11]:

E
[
g2
]
t

= µE
[
g2
]
t−1

+ (1− µ)g2
t (10)

where µ ∈ (0, 1) is a degree of weighting decrease and plays
a similar role as in the momentum method (see Equation (4)).
We then replace Gt in Equation (7) with the decaying aver-
age E[g2]t:

∆θt = − η√
E[g2]t + ε

· gt (11)

where ε is a smoothing term that aims to prevent division by
zero. The denominator is nothing but the (numerical) Root
Mean Square (RMS) of the gradient [11]:

RMS[g]t =
√
E[g2]t + ε (12)

Therefore, Equation (11) can also be written as [11]:

∆θt = − η

RMS[g]t
· gt (13)

4.4.2. Correct Units with Hessian Approximation

At each iteration, ∆θ is applied to θ to perform an update.
Therefore, the units of ∆θ and θ should match. In other
words, if the parameters θ have some hypothetical units, the
changes to the parameters ∆θ sholud be in the same units as
well. However, first-order methods, such as SGD, Momen-
tum, and AdaGrad, don’t have correct units [11]:

units of ∆θ ∝ units of g ∝ ∂J

∂θ
∝ 1

units of θ
(14)

assuming the loss function J is unitless. In contrast, second-
order methods like Newton’s method, which make use of
Hession information or an approximation to the Hessian, pro-
vide the correct units [11]:

∆θ ∝ H−1g ∝
∂J
∂θ
∂2J
∂θ2

∝ units of θ (15)

One of the most widely used second-order method is
Newton’s method, whose update rule at time step t is [16]:

θt+1 = θt −D2J(θt)
−1∇θJ(θt)

= θt −H(J(θt))
−1 · gt

(16)

where D2J(θt) denotes the second derivative of the loss
function J(θ). Comparing Equation (16) with normal gra-
dient descent update step (Equation (1)), H(J(θt))

−1 can

then be considered as an automatically adaptive learning rate.
Thus, there is no need to select a global learning rate manu-
ally.

Based on the approximation method proposed by Becker
and Lecun [12]:

∆θt = − 1

|diag(Ht)|+ µ
gt (17)

where µ is a small constant to improve the conditioning of
the Hessian for regions of small curvature [11], we rearrange
Newton’s method (assuming a diagonal Hessian) [11]:

∆θt =
∂J
∂θt
∂2J
∂θ2t

(18)

⇒ 1
∂2J
∂θ2t

=
∆θt
∂J
∂θt

(19)

The denominater ∂J
∂θt

can be estimated with the RMS of the
previous gradients RMS[g]t (Equation (12)) [11]:

∂J

∂θt
≈ RMS[g]t (20)

As the numerator, ∆θt, is unknown at the current step, we ap-
proximate it by computing the exponentially decaying RMS
over a window of size w under the assumption that the cur-
vature is locally smooth [11]:

E
[
∆θ2

]
t−1

= µE
[
∆θ2

]
t−2

+ (1− µ)∆θ2
t−1 (21)

RMS[∆θ]t−1 =
√
E [∆θ2]t−1 + ε (22)

∆θt ≈ RMS[∆θ]t−1 (23)

Combining Equation (16), (20), and (23) finally yields
the update rule of Adadelta [11]:

θt+1 = θt −
RMS[∆θ]t−1

RMS[g]t
gt (24)

Notice that the term RMS[∆θ]t−1

RMS[g]t
is an approximation to the

diagonal Hessian using only RMS measure of g and ∆θ.
This approximation is always positive [12], which thus en-
sures the update direction follows the negative gradient at
each step. Furthermore, the numerator plays the role of ac-
celeration term, which accumulates previous gradients over
a window of time as in momentum [11]. In addition, the
denominator is related to AdaGrad. Its squared gradient in-
formation per-dimension helps to even out the progress made
in each dimension, but is computed over a window to ensure
progress is made later in training [11]. The complete algo-
rithm is presented in Algorithm 4.

4.5. RMSprop

RMSprop is an unpublished optimization algorithm designed
for neural networks, first proposed by Geoff Hinton in Lec-

Algorithm 4 Adadelta update at time t
Require: Decay rate µ, Constant ε
Require: Initial parameter θ0 ∈ Rd

1: Initialize accumulation variables E[g2]0 = 0, E[∆x2]0 = 0

2: for t← 1 to T do
3: Compute gradient: gt
4: Accumulate Gradient: E[g2]t = µE[g2]t−1 + (1 − µ)g2t

5: Compute Update: ∆θt = −RMS[∆θ]t−1

RMS[g]t
gt

6: Accumulate Updates:E[∆θ2]t = µE[∆θ2]t−1 + (1 − µ)∆θ2t

7: Apply Update: θt+1 = θt + ∆θt

8: end for

ture 6e of his online Coursera course1. The update rule of
RMSprop is essentially the same as Equation (13):

E
[
g2
]
t

= µE
[
g2
]
t−1

+ (1− µ)g2
t

θt+1 = θt −
η√

E[g2]t + ε
· gt

(12)
= θt −

η

RMS[g]t
· gt

(25)

Hinton suggests the hyperparameter µ have a value of 0.9
and the learning rate η should be 0.001.

Due to its good performance, especially for the non-
convex case, RMSprop has been empirically shown to be an
effective and useful optimization algorithm. And it is cur-
rently one of the go-to optimization methods being employed
routinely by deep learning practitioners [6].

4.6. Adam

Another popular method with adaptive learning rates for each
parameter is Adaptive Moment Estimation (Adam) [13]. It is
essentially the combination of Momentum (Section 4.1) and
RMSprop (Section 4.5).

At time step t, we update EWMA of the gradient (mt)
and the squared gradient (vt). These moving averages are
estimates of the first moment (the mean) mt and the second
raw moment (the uncentered variance) vt [13]:

mt = β1mt−1 + (1− β1) gt (26)

vt = β2vt−1 + (1− β2) g2
t (27)

Nevertheless, these moving averages are initialized as 0 (vec-
tor of 0’s), which causes the problem that they are biased to-
wards zero during the initial time steps, and especially when
the decay rates are small [13]. Therefore, these biases have
to be counteracted [1, 13]:

m̂t =
mt

1− βt1
(28)

v̂t =
vt

1− βt2
(29)

1https://www.cs.toronto.edu/˜tijmen/csc321/
slides/lecture_slides_lec6.pdf

The update rule of Adam is similar to the form as in Adadelta
and RMSprop [13]:

θt+1 = θt −
η√
v̂t + ε

m̂t (30)

The default values for β1, β2, and ε are proposed to be 0.9,
0.999, and 10−8 [13]. The complete algorithm of Adam is
described in Algorithm 5.

Algorithm 5 Adam. Default settings are η = 0.001, β1 =
0.9, β2 = 0.999, and ε = 10−8

Require: η: learning rate
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the

moment estimates
Require: J(θ): Loss function with parameters θ
Require: θ0: Initial parameter vector

1: m0 ← 0 . Initialize 1st moment vector
2: v0 ← 0 . Initialize 2nd moment vector
3: t← 0
4: while stopping criterion not met do
5: t← t+ 1
6: gt ← ∇θJ(θ)
7: mt = β1mt−1 + (1− β1) gt
8: vt = β2vt−1 + (1− β2) g2

t

9: m̂t = mt
1−βt1

. Bias correction for 1st moment

10: v̂t = vt
1−βt2

. Bias correction for 2nd moment
11: θt+1 = θt − η√

v̂t+ε
m̂t . Update parameters

12: end while
13: return θt

It is empirically shown that Adam works well in prac-
tice and compares favorably to other stochastic optimization
methods (Figure 10) [13]. In practice, Adam is currently
recommended as the default algorithm to use. However, it
is usually also worth trying SGD combining with Nesterov
Momentum as an alternative [14].

4.7. Selection of Optimization Algorithms

After discussing a number of optimization algorithms that
attempt to overcome the weakness of vanilla gradient de-
scent and improve its performance, a natural question occurs:
which algorithm should we choose?

Unfortunately, insofar there is no consensus on this point.
Based on the analysis and comparison presented by Schaul
[15], the family of algorithms with adaptive learning rate
(AdaGrad, Adadelta, RMSprop, Adam) have fairly robust
performance. RMSprop, Adadelta, and Adam are very sim-
ilar to each other and perform well in similar situations. It
is shown that Adam slightly outperforms RMSprop thanks to
its bias correction. However, there’s no absolute best algo-
rithm.

Currently, the most popular optimization algorithms ac-
tively in use are SGD, SGD with momentum, RMSprop,
RMSprop with momentum, Adadelta, and Adam [6]. For

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Figure 10: Comparison between gradient descent optimiza-
tion algorithms (Source: [13])

ease of hyperparameter tuning, the choice of optimization
algorithm seems to be heavily reliant on the practitioner’s fa-
miliarity with the algorithm [6]. A practical suggestion is
that the best result can be likely achieved using one of the
adaptive learning rate methods, if the input data is sparse [1].
Moreover, if we care about fast convergence and train a deep
or complex neural network (such as CNN, RNN), we should
prefer the member of the adaptive learning rate methods [1].

5. Conclusions
In this paper, we have initially introduced three variants of
gradient descent, among which Mini-Batch Gradient Descent
is usually the algorithm of choice. Two common issues of
gradient descent, improper learning rate and non-convex loss
function, have also been addressed. Aiming to overcome
these weaknesses, we have investigated numbers of popular
optimization algorithms: Momentum, Nesterov momentum,
AdaGrad, Adadelta, RMSprop, and Adam. Based on practi-
cal experience, it turned out that adaptive learning rate meth-
ods (AdaGrad, Adadelta, RMSprop, and Adam) provide a
fairly robust performance. Therefore, they are preferred for
training a deep or complex neural network, especially when
the input data is sparse.

6. References
[1] Sebastian Ruder. An overview of gradient descent opti-

mization algorithms. arXiv preprint arXiv:1609.04747,
2016.

[2] Kevin P Murphy. Machine learning: a probabilistic
perspective. MIT press, 2012.

[3] Andrew Ng. Cs229 lecture notes. CS229 Lecture notes,
1(1):1–3, 2000.

[4] Aurélien Géron. Hands-on machine learning with
Scikit-Learn and TensorFlow: concepts, tools, and
techniques to build intelligent systems. ” O’Reilly Me-
dia, Inc.”, 2017.

[5] Ilya Sutskever, James Martens, George Dahl, and Ge-
offrey Hinton. On the importance of initialization and
momentum in deep learning. In International confer-
ence on machine learning, pages 1139–1147, 2013.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. MIT press, 2016.

[7] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre,
Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio.
Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization. In Ad-
vances in neural information processing systems, pages
2933–2941, 2014.

[8] Yurii E Nesterov. A method for solving the convex pro-
gramming problem with convergence rate o (1/kˆ 2).
In Dokl. akad. nauk Sssr, volume 269, pages 543–547,
1983.

[9] Yurii Nesterov. Lectures on convex optimization, vol-
ume 137. Springer, 2018.

[10] John Duchi, Elad Hazan, and Yoram Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[11] Matthew D Zeiler. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701, 2012.

[12] Sue Becker, Yann Le Cun, et al. Improving the con-
vergence of back-propagation learning with second or-
der methods. In Proceedings of the 1988 connectionist
models summer school, pages 29–37, 1988.

[13] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[14] Andrej Karpathy et al. Cs231n convolutional neural
networks for visual recognition. Neural networks, 1,
2016.

[15] Tom Schaul, Ioannis Antonoglou, and David Silver.
Unit tests for stochastic optimization. arXiv preprint
arXiv:1312.6055, 2013.

[16] Mordecai Avriel. Nonlinear programming: analysis
and methods. Courier Corporation, 2003.

	 Introduction
	 Gradient Descent Variants
	 Batch Gradient Descent
	 Stochastic Gradient Descent
	 Mini-batch Gradient Descent
	 Comparison and Trade-offs

	 Challenges of Gradient Descents
	 Learning Rate
	 Non-convex Loss function

	 Gradient Descent Optimization Algorithms
	 Momentum
	 Nesterov Momentum
	 AdaGrad
	 Adadelta
	 Accumulate over Window
	 Correct Units with Hessian Approximation

	 RMSprop
	 Adam
	 Selection of Optimization Algorithms

	 Conclusions
	 References

