Linear Regression
Linear Regression Model
A linear model makes a prediction y^โiโ by simply computing a weighted sum of the input xiโ, plus a constant w0โ called the bias term:
For single sample/instances
y^โiโ=f(x)=w0โ+โ_j=1Dw_jx_i,jIn matrix-form:
y^โ_i=w0โ+โ_j=1Dwjโxi,jโ=x~_iTw x~_i=โ1xiโโโ=โ1x_i,1โฎx_i,DโโโRD+1
w=โw_0โฎw_DโโโRD+1
On full dataset
y^โ=โy^โ_1โฎy^โ_nโโ=โx~_1Twโฎx~_nTwโโ=โ1โฎ1โx_1Tโฎx_nTโโโ_=:Xw=Xw- y^โ: vector containing the output for each sample
- X: data-matrix containing a vector of ones as the first column as bias
y=โyโ_1โฎyโ_nโโโ_โRnร1=โx_1Twโฎx_nTwโโ=โ1โ
w_0+x_1,1โ
w_1+โฏ+x_1,Dโ
w_Dโฎ1โ
w_0+xn,1โโ
w_1+โฏ+x_n,Dโ
wDโโโ==โ1โฎ1โx_1TโฎxnTโโโ=:XโRnร(1+D)โ1โฎ1โx_1,1โฎx_n,1โโฏโฑโฏโx_1,Dโฎx_n,Dโโโโ
โโw_0w1โโฎw_Dโโโ_=:wโR(1+D)ร1