Probabilistische Systemmodelle

Probabilistische Systemmodelle

Mit Additivem Rauschen

Allgemein:

zβ€Ύ=aβ€Ύ(xβ€Ύ)+vβ€Ύ \underline{z} = \underline{a}(\underline{x}) + \underline{v}

β‡’\Rightarrow

f(zβ€Ύβˆ£xβ€Ύ)=fv(zβ€Ύβˆ’aβ€Ύ(xβ€Ύ)) f(\underline{z} \mid \underline{x})=f_v(\underline{z}-\underline{a}(\underline{x}))

Beispiel:

z=x2+vv∼fv(v) z = x^2 + v \qquad v \sim f_v(v)

Gesucht: f(z∣x)f(z|x)

f(z∣x,v)=Ξ΄(zβˆ’x2βˆ’v),f(z,v∣x)=f(z∣x,v)β‹…fv(v) f(z \mid x, v)=\delta\left(z-x^{2}-v\right), \quad f(z, v \mid x)=f(z \mid x, v) \cdot f_v(v) f(z∣x)=Marginalisierung∫Rf(z,v∣x)dv=∫Rf(z∣x,v)β‹…fv(v)dv=∫RΞ΄(zβˆ’x2βˆ’v)β‹…fv(v)dv=fv(zβˆ’x2) \begin{aligned} f(z \mid x) &\overset{\text{Marginalisierung}}{=}\int_{\mathbb{R}} f(z, v \mid x) d v\\ &=\int_{\mathbb{R}} f(z \mid x, v) \cdot f_v(v) d v \\ &=\int_{\mathbb{R}} \delta\left(z-x^{2}-v\right) \cdot f_v(v) d v \\ &=f_{v}\left(z-x^{2}\right) \end{aligned}

In dem Fall

z=xk+1x=xk, z = x_{k + 1} \quad x = x_{k},

heißt

fv(z∣x)=fv(xk+1∣xk)=fv(xk+1βˆ’a(xk))(additive) f_v(z \mid x) = f_v(x_{k+1} \mid x_k) = f_v(x_{k+1} - a(x_k)) \tag{additive}

Transitionsdichte (Engl. transition density).

Mit Multiplikativem Rauschen

Abbildung

z=xβ‹…vv∼N(v,0,Οƒv) z = x \cdot v \quad v \sim \mathcal{N}(v, 0, \sigma_v)

Annahme: z,x,vz, x, v sind positiv.

Gesucht: f(z∣x)f(z \mid x)

RΓΌckfΓΌhrung auf additiven Fall mit log⁑(β‹…)\log(\cdot):

log⁑(z)⏟zΛ‰=log⁑(xβ‹…v)=log⁑(x)⏟xΛ‰+log⁑(v)⏟vˉ⇔zΛ‰=xΛ‰+vΛ‰ \underbrace{\log (z)}_{\bar{z}}=\log (x \cdot v)=\underbrace{\log (x)}_{\bar{x}}+\underbrace{\log (v)}_{\bar{v}} \Leftrightarrow \bar{z}=\bar{x}+\bar{v}

Dichte von vΛ‰=log⁑(v)\bar{v} = \log(v) :

f(vΛ‰βˆ£v)=Ξ΄(vΛ‰βˆ’log⁑(v))=exp⁑(vΛ‰)Ξ΄(vβˆ’exp⁑(vΛ‰)) f(\bar{v} \mid v) = \delta(\bar{v} - \log(v)) = \exp(\bar{v})\delta(v - \exp(\bar{v})) \begin{aligned} f_\bar{v}(\bar{v}) &= \int_{\mathbb{R}} f(\bar{v} \mid v) f_v(v) dv \\\\ &= \int_{\mathbb{R}} \exp(\bar{v})\delta(v - \exp(\bar{v})) f_v(v) dv \\\\ &= \exp(\bar{v}) f_v(\exp(\bar{v})) \\\\ &= \frac{1}{\sqrt{2 \pi} \sigma_{v}} \exp (\bar{v}) \exp\left\{-\frac{1}{2} \frac{[\exp(\bar{v})]^{2}}{\sigma_{v}^{2}}\right\} \end{aligned}

Dann

\begin{aligned} f(\bar{z} \mid \bar{x}) &= f_\bar{v}(\bar{z} - \bar{x}) \\ &= \frac{1}{\sqrt{2 \pi} \sigma_{v}} \exp \{\bar{z} - \bar{x}\} \exp\left\{-\frac{1}{2} \frac{[\exp(\bar{z} - \bar{x})]^{2}}{\sigma_{v}^{2}}\right\} \end{aligned} z=exp⁑{zΛ‰}β‡’g(zΛ‰)=zβˆ’exp⁑(zΛ‰)β‡’gβ€²(zΛ‰)=βˆ’exp⁑(zΛ‰)Nullstelle:zΛ‰=log⁑(z) \begin{aligned} z = \exp\{\bar{z}\} &\Rightarrow g(\bar{z}) = z - \exp(\bar{z}) \\ &\Rightarrow g^{\prime}(\bar{z}) = -\exp(\bar{z}) \quad \text{Nullstelle}: \bar{z} = \log(z) \end{aligned} f(z∣xΛ‰)=1∣z∣f(log⁑(z)∣xΛ‰) f(z \mid \bar{x}) = \frac{1}{|z|} f(\log(z) \mid \bar{x})

x=exp⁑(xΛ‰)β‡’x = \exp(\bar{x}) \Rightarrow

f(z∣x)=12πσv1∣x∣exp⁑{βˆ’12z2Οƒv2x2} f(z \mid x)=\frac{1}{\sqrt{2 \pi} \sigma_{v}} \frac{1}{|x|} \exp \left\{-\frac{1}{2} \frac{z^{2}}{\sigma_{v}^{2} x^{2}}\right\}

Direkte LΓΆsung:

f(z∣x,v)=Ξ΄(zβˆ’xβ‹…v) f(z \mid x, v) = \delta(z - x \cdot v) f(z,v∣x)=f(z∣x,v)β‹…fv(v)=Ξ΄(zβˆ’xβ‹…v)fv(v) f(z, v \mid x) = f(z \mid x, v) \cdot f_v(v) = \delta(z - x \cdot v) f_v(v) f(z∣x)=∫Rf(z,v∣x)dv=∫RΞ΄(zβˆ’xβ‹…v)fv(v)dv f(z \mid x) = \int_{\mathbb{R}} f(z, v \mid x) dv = \int_{\mathbb{R}}\delta(z - x \cdot v) f_v(v) dv

Setze

g(v):=zβˆ’xvβ‡’gβ€²(v)=βˆ’x,Nullstelle v=zx \begin{aligned} g(v) := z - xv &\Rightarrow g^\prime(v) = -x, \quad \text{Nullstelle } v = \frac{z}{x} \end{aligned}

Daher

f(z∣x)=∫R1∣x∣δ(vβˆ’zx)β‹…fv(v)dv=1∣xβˆ£β‹…fv(zx)(multiplicative) \begin{aligned} f(z \mid x)&=\int_{\mathbb{R}} \frac{1}{|x|} \delta\left(v-\frac{z}{x}\right) \cdot f_v(v) d v \\ &=\frac{1}{|x|} \cdot f_v\left(\frac{z}{x}\right) \qquad \qquad (\text{multiplicative}) \end{aligned}

Mixed Additive and Multiplicative Noise (Script Chp. 9.2.2)

System equation

xk+1=xkvk+wk x_{k+1} = x_k v_k + w_k

with additive noise wkw_k and multiplicative noise vkv_k. The noise termsare jointly distributed according to fkvw(vk,wk)f_{k}^{vw}(v_k, w_k).

The joint density of the state at time step k+1k+1 is

f(xk+1,vk,wk∣xk)=f(xk+1∣xk,vk,wk)fkvw(vk,wk), f\left(x_{k+1}, v_{k}, w_{k} \mid x_{k}\right)=f\left(x_{k+1} \mid x_{k}, v_{k}, w_{k}\right) f_{k}^{v w}\left(v_{k}, w_{k}\right),

where according to the system equation the density of the state at time step k+1k + 1 conditioned on the state at time step kk and the noise terms vkv_k and wkw_k is

f(xk+1∣xk,vk,wk)=Ξ΄(xk+1βˆ’xkvkβˆ’wk). f(x_{k+1} \mid x_{k}, v_{k}, w_{k}) = \delta(x_{k+1} - x_{k}v_{k} - w_{k}).

The desired transition density is now given by

f(xk+1∣xk)=∫R∫Rf(xk+1,vk,wk∣xk)dwkdvk=∫R∫RΞ΄(xk+1βˆ’xkvkβˆ’wk)fkvw(vk,wk)dwk dvk=additivefk(xk+1∣xk)=∫Rfkvw(vk,xk+1βˆ’xkvk)dvk∣vk,wk independent=∫Rfkv(vk)fkw(xk+1βˆ’xkvk)dvk \begin{aligned} f\left(x_{k+1} \mid x_{k}\right) &=\int_{\mathbb{R}} \int_{\mathbb{R}} f\left(x_{k+1}, v_{k}, w_{k} \mid x_{k}\right) d w_{k} d v_{k} \\ &=\int_{\mathbb{R}} \int_{\mathbb{R}} \delta\left(x_{k+1}-x_{k} v_{k}-w_{k}\right) f_{k}^{v w}\left(v_{k}, w_{k}\right) \mathrm{d} w_{k} \mathrm{~d} v_{k}\\ &\overset{\text{additive}}{=} f_{k}\left(x_{k+1} \mid x_{k}\right)=\int_{\mathbb{R}} f_{k}^{v w}\left(v_{k}, x_{k+1}-x_{k} v_{k}\right) \mathrm{d} v_{k} \mid v_k, w_k \text{ independent}\\ &=\int_{\mathbb{R}} f_{k}^{v}\left(v_{k}\right) f_{k}^{w}\left(x_{k+1}-x_{k} v_{k}\right) \mathrm{d} v_{k} \end{aligned}

These expressions cannot in general be solved analytically.