Sampling Reapproximation von Dichten Approximate original continuous density with discrete Dirac Mixture
f ( x βΎ ) = β i = 1 L w i β
Ξ΄ ( x βΎ β x ^ βΎ i )
f(\underline{x})=\sum_{i=1}^{L} w_{i} \cdot \delta\left(\underline{x}-\underline{\hat{x}}_{i}\right)
f ( x β ) = i = 1 β L β w i β β
Ξ΄ ( x β β x ^ β i β ) Weights w i > 0 , β i = 1 L w i = 1 w_{i}>0, \displaystyle \sum_{i=1}^{L} w_{i}=1 w i β > 0 , i = 1 β L β w i β = 1 x βΎ i \underline{x}_i x β i β : locations / samplesIn univariate case (1D), compare cumulative distribution functions (CDFs) F ~ ( x ) , F ( x ) \tilde{F}(x), F(x) F ~ ( x ) , F ( x ) using CramΓ©rβvon Mises distance :
D ( x ^ βΎ ) = β« R ( F ~ ( x ) β F ( x , x ^ βΎ ) ) 2 d x
D(\underline{\hat{x}})=\int_{\mathbb{R}}(\tilde{F}(x)-F\left(x, \underline{\hat{x}})\right)^{2} \mathrm{~d} x
D ( x ^ β ) = β« R β ( F ~ ( x ) β F ( x , x ^ β ) ) 2 d x F ( x , x ^ βΎ ) F(x, \underline{\hat{x}}) F ( x , x ^ β )
: Dirac mixture cumulative distribution
F ( x , x ^ βΎ ) = β i = 1 L w i H ( x β x ^ i ) with H ( x ) = β« β β x Ξ΄ ( t ) d t = { 0 x < 0 1 2 x = 0 1 x > 0
F(x, \underline{\hat{x}})=\sum_{i=1}^{L} w_{i} \mathrm{H}\left(x-\hat{x}_{i}\right) \text { with } \mathrm{H}(x)=\int_{-\infty}^{x} \delta(t) \mathrm{d} t= \begin{cases}0 & x<0 \\ \frac{1}{2} & x=0 \\ 1 & x>0\end{cases}
F ( x , x ^ β ) = i = 1 β L β w i β H ( x β x ^ i β ) with H ( x ) = β« β β x β Ξ΄ ( t ) d t = β© β¨ β§ β 0 2 1 β 1 β x < 0 x = 0 x > 0 β with the Dirac position
x ^ βΎ = [ x ^ 1 , x ^ 2 , β¦ , x ^ L ] β€
\underline{\hat{x}}=\left[\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{L}\right]^{\top}
x ^ β = [ x ^ 1 β , x ^ 2 β , β¦ , x ^ L β ] β€ We minimize the CramΓ©rβvon Mises distance D ( x ^ βΎ ) D(\underline{\hat{x}}) D ( x ^ β )
with Newtonβs method.
Generalization of concept of CDF Localized Cumulative Distribution (LCD) F ( m βΎ , b ) = β« R N f ( x βΎ ) K ( x βΎ β m βΎ , b ) d x βΎ
F(\underline{m}, b)=\int_{\mathbb{R}^{N}} f(\underline{x}) K(\underline{x}-\underline{m}, b) \mathrm{d} \underline{x}
F ( m β , b ) = β« R N β f ( x β ) K ( x β β m β , b ) d x β K ( β
, β
) K(\cdot, \cdot) K ( β
, β
) : Kernel
K ( x βΎ β m βΎ , b ) = β k = 1 N exp β‘ ( β 1 2 ( x k β m k ) 2 b 2 )
K(\underline{x}-\underline{m}, b)=\prod_{k=1}^{N} \exp \left(-\frac{1}{2} \frac{\left(x_{k}-m_{k}\right)^{2}}{b^{2}}\right)
K ( x β β m β , b ) = k = 1 β N β exp ( β 2 1 β b 2 ( x k β β m k β ) 2 β ) m βΎ \underline{m} m β : Kernel location
b βΎ \underline{b} b β : Kernel width
Properties of LCD:
Symmetric Unique Multivariate Generalized CramΓ©rβvon Mises Distance (GCvD)
D = β« R + w ( b ) β« R N ( F ~ ( m βΎ , b ) β F ( m βΎ , b ) ) 2 d m βΎ d b
D=\int_{\mathbb{R}_{+}} w(b) \int_{\mathbb{R}^{N}}(\tilde{F}(\underline{m}, b)-F(\underline{m}, b))^{2} \mathrm{~d} \underline{m} \mathrm{~d} b
D = β« R + β β w ( b ) β« R N β ( F ~ ( m β , b ) β F ( m β , b ) ) 2 d m β d b F ~ ( m βΎ , b ) \tilde{F}(\underline{m}, b) F ~ ( m β , b ) : LCD of continuous densityF ( m βΎ , b ) F(\underline{m}, b) F ( m β , b ) : LCD of Dirac mixtureMinimization of GCvD: Quasi-Newton method (L-BFGS)
Projected Cumulative Distribution (PCD) Use reapproximation methods for univariate case in multivariate case.
Radon Transform
Represent general N N N -dimensional probability density functions via the set of all one-dimensional projections
Linear projection of random vector x βΎ β R N \underline{\boldsymbol{x}} \in \mathbb{R}^{N} x β β R N to to scalar random variable r β R \boldsymbol{r} \in \mathbb{R} r β R onto line described by unit vector u βΎ β S N β 1 \underline{u} \in \mathbb{S}^{N-1} u β β S N β 1
r = u βΎ β€ x βΎ
\boldsymbol{r} = \underline{u}^\top \underline{\boldsymbol{x}}
r = u β β€ x β Given probability density function f ( x βΎ ) f(\underline{x}) f ( x β ) of random vector x βΎ \underline{\boldsymbol{x}} x β , density f r ( r β£ u βΎ ) f_r(r \mid \underline{u}) f r β ( r β£ u β ) is Radon transfrom of f ( x βΎ ) f(\underline{x}) f ( x β ) for all u βΎ β S N β 1 \underline{u} \in \mathbb{S}^{N-1} u β β S N β 1
f r ( r β£ u βΎ ) = β« R N f ( t βΎ ) Ξ΄ ( r β u βΎ β€ t βΎ ) d t βΎ
f_{r}(r \mid \underline{u})=\int_{\mathbb{R}^{N}} f(\underline{t}) \delta\left(r-\underline{u}^{\top} \underline{t}\right) \mathrm{d} \underline{t}
f r β ( r β£ u β ) = β« R N β f ( t β ) Ξ΄ ( r β u β β€ t β ) d t β Representing PDFs by all one-dimensional projections
Represent the two densities f ~ ( x βΎ ) \tilde{f}(\underline{x}) f ~ β ( x β ) and f ( x βΎ ) f(\underline{x}) f ( x β ) by their Radon transforms f ~ ( r β£ u βΎ ) \tilde{f}(r \mid \underline{u}) f ~ β ( r β£ u β ) and f ( r β£ u ) f(r \mid u) f ( r β£ u )
Compare the sets of projections f ~ ( r β£ u βΎ ) \tilde{f}(r \mid \underline{u}) f ~ β ( r β£ u β ) and f ( r β£ u ) f(r \mid u) f ( r β£ u ) for every u βΎ β S N β 1 \underline{u} \in \mathbb{S}^{N-1} u β β S N β 1 . Resulting distance is
D 1 ( u βΎ ) = D ( f ~ ( r β£ u βΎ ) , f ( r β£ u βΎ ) )
D_{1}(\underline{u})=D(\tilde{f}(r \mid \underline{u}), f(r \mid \underline{u}))
D 1 β ( u β ) = D ( f ~ β ( r β£ u β ) , f ( r β£ u β )) Integrate these one-dimensional distance measures D 1 ( u βΎ ) D_1(\underline{u}) D 1 β ( u β ) over all unit vectors u βΎ β S N β 1 \underline{u} \in \mathbb{S}^{N-1} u β β S N β 1 to get the multivariate distance measure D ( f ~ ( x βΎ ) , f ( x βΎ ) ) D(\tilde{f}(\underline{x}), f(\underline{x})) D ( f ~ β ( x β ) , f ( x β )) . Minimize via univariate Newton updates.
Navies Partikel Filter PrΓ€diktion π‘Update Sample Positionen. Gewichte bleiben gleich.
f k e ( x βΎ k ) f_{k}^{e}\left(\underline{x}_{k}\right) f k e β ( x β k β )
durch Dirac Mixture darstellen
f k e ( x βΎ k ) = β i = 1 L w k e , i β
Ξ΄ ( x βΎ k β x ^ βΎ k e , i ) w k e , i = 1 L , i β { 1 , β¦ , L }
f_{k}^{e}\left(\underline{x}_{k}\right)=\sum_{i=1}^{L} w_{k}^{e, i} \cdot \delta\left(\underline{x}_{k}-\underline{\hat{x}}_{k}^{e, i}\right) \qquad w_{k}^{e, i}=\frac{1}{L}, i \in\left\{1, \ldots, L\right\}
f k e β ( x β k β ) = i = 1 β L β w k e , i β β
Ξ΄ ( x β k β β x ^ β k e , i β ) w k e , i β = L 1 β , i β { 1 , β¦ , L } Ziehe Samples zum Zeitpunkt k + 1 k+1 k + 1
x ^ βΎ k + 1 p , i βΌ f ( x βΎ k + 1 β£ x ^ k e , i )
\underline{\hat{x}}_{k+1}^{p, i} \sim f\left(\underline{x}_{k+1} \mid \hat{x}_{k}^{e, i}\right)
x ^ β k + 1 p , i β βΌ f ( x β k + 1 β β£ x ^ k e , i β ) Gewichte bleiben gleich
w k + 1 p , i = w k e , i
w_{k+1}^{p, i} = w_{k}^{e, i}
w k + 1 p , i β = w k e , i β f k + 1 p ( x βΎ k ) f_{k+1}^{p}\left(\underline{x}_{k}\right) f k + 1 p β ( x β k β )
durch Dirac Mixture darstellen
f k + 1 p ( x βΎ k + 1 ) = β i = 1 L w k + 1 p , i Ξ΄ ( x βΎ k + 1 β x ^ βΎ k + 1 p , i )
f_{k+1}^{p}\left(\underline{x}_{k+1}\right)=\sum_{i=1}^{L} w_{k+1}^{p, i} \delta\left(\underline{x}_{k+1}-\underline{\hat{x}}_{k+1}^{p, i}\right)
f k + 1 p β ( x β k + 1 β ) = i = 1 β L β w k + 1 p , i β Ξ΄ ( x β k + 1 β β x ^ β k + 1 p , i β ) Filterung π‘Update Gewichte. Sample Positionen bleiben gleich.
f k e ( x βΎ k ) β f ( y βΎ k β£ x βΎ k ) β
f k p ( x βΎ k ) = f ( y βΎ k β£ x βΎ k ) β
β i = 1 L w k p , i β
Ξ΄ ( x βΎ k β x ^ βΎ k p , i ) = β i = 1 L w k p , i β
f ( y βΎ k β£ x βΎ ^ k p , i ) β β w k e , i β
Ξ΄ ( x βΎ k β x ^ βΎ k p , i β x ^ βΎ k e , i )
\begin{aligned}
f_{k}^{e}\left(\underline{x}_{k}\right) &\propto f\left(\underline{y}_{k} \mid \underline{x}_{k}\right) \cdot f_{k}^{p}\left(\underline{x}_{k}\right)\\
&=f\left(\underline{y}_{k} \mid \underline{x}_{k}\right) \cdot \sum_{i=1}^{L} w_{k}^{p, i} \cdot \delta\left(\underline{x}_{k}-\underline{\hat{x}}_{k}^{p, i}\right)\\
&=\sum_{i=1}^{L} \underbrace{w_{k}^{p, i} \cdot f\left(\underline{y}_{k} \mid \hat{\underline{x}}_{k}^{p, i}\right)}_{\propto w_{k}^{e, i}} \cdot \delta(\underline{x}_{k}-\underbrace{\underline{\hat{x}}_{k}^{p, i}}_{\underline{\hat{x}}_{k}^{e, i}})
\end{aligned}
f k e β ( x β k β ) β β f ( y β k β β£ x β k β ) β
f k p β ( x β k β ) = f ( y β k β β£ x β k β ) β
i = 1 β L β w k p , i β β
Ξ΄ ( x β k β β x ^ β k p , i β ) = i = 1 β L β β w k e , i β w k p , i β β
f ( y β k β β£ x β ^ β k p , i β ) β β β
Ξ΄ ( x β k β β x ^ β k e , i β x ^ β k p , i β β β ) β Positionen bleiben gleich
x ^ βΎ k e , i = x ^ βΎ k p , i
\underline{\hat{x}}_{k}^{e, i} = \underline{\hat{x}}_{k}^{p, i}
x ^ β k e , i β = x ^ β k p , i β Gewichte adaptieren
w k e , i β w k p , i β
f ( y βΎ k β£ x βΎ ^ k p , i )
w_{k}^{e, i} \propto w_{k}^{p, i} \cdot f\left(\underline{y}_{k} \mid \hat{\underline{x}}_{k}^{p, i}\right)
w k e , i β β w k p , i β β
f ( y β k β β£ x β ^ β k p , i β ) und Normalisieren
w k e , i : = w k e , i β i w k e , i
w_{k}^{e, i}:=\frac{w_{k}^{e, i}}{\displaystyle \sum_{i} w_{k}^{e,i}}
w k e , i β := i β β w k e , i β w k e , i β β Problem Varianz der Samples erhΓΆht sich mit Filterschritten
Partikel sterben aus β \rightarrow β Degenerierung des Filters
Aussterben schneller, je genauer die Messung, da Likelihood schmaler (Paradox!)
Resampling Approximation der gewichteter Samples durch ungewichtete
f k e ( x βΎ k ) = β i = 1 L w k e , i β
Ξ΄ ( x βΎ k β x ^ βΎ k e , i ) β β i = 1 L 1 L Ξ΄ ( x βΎ k β x ^ βΎ k e , i )
f_{k}^{e}\left(\underline{x}_{k}\right)=\sum_{i=1}^{L} w_{k}^{e, i} \cdot \delta\left(\underline{x}_{k}-\underline{\hat{x}}_{k}^{e, i}\right) \approx \sum_{i=1}^{L} \frac{1}{L} \delta\left(\underline{x}_{k}-\underline{\hat{x}}_{k}^{e, i}\right)
f k e β ( x β k β ) = i = 1 β L β w k e , i β β
Ξ΄ ( x β k β β x ^ β k e , i β ) β i = 1 β L β L 1 β Ξ΄ ( x β k β β x ^ β k e , i β ) Gegeben: L L L Partikel mit Gewichten w i w_i w i β
Gesucht: L L L Partikel mit Geweichte 1 L \frac{1}{L} L 1 β (gleichgewichtet)
Sequential Importance Sampling f k e ( x βΎ k ) = f ( x βΎ k β£ y βΎ 1 : k ) f_{k}^{e}\left(\underline{x}_{k}\right)=f\left(\underline{x}_{k} \mid \underline{y}_{1: k}\right) f k e β ( x β k β ) = f ( x β k β β£ y β 1 : k β )
auf x βΎ 1 : k β 1 \underline{x}_{1: k-1} x β 1 : k β 1 β
marginalisieren
f k e ( x βΎ k ) = f ( x βΎ k β£ y βΎ 1 : k ) = β« R N β― β« R N f ( x βΎ 1 : k β£ y βΎ 1 : k ) d x βΎ 1 : k β 1
f_{k}^{e}\left(\underline{x}_{k}\right)=f\left(\underline{x}_{k} \mid \underline{y}_{1: k}\right)=\int_{\mathbb{R}^{N}} \cdots \int_{\mathbb{R}^{N}} f\left(\underline{x}_{1: k} \mid \underline{y}_{1 : k}\right) d \underline{x}_{1: k-1}
f k e β ( x β k β ) = f ( x β k β β£ y β 1 : k β ) = β« R N β β― β« R N β f ( x β 1 : k β β£ y β 1 : k β ) d x β 1 : k β 1 β Importance Sampling fΓΌr f ( x βΎ k , x βΎ k β 1 β£ y βΎ 1 : k ) f(\underline{x}_k, \underline{x}_{k-1} \mid \underline{y}_{1:k}) f ( x β k β , x β k β 1 β β£ y β 1 : k β )
f k e ( x βΎ k ) = β« R N β― β« R N f ( x βΎ 1 : k β£ y βΎ 1 : k ) p ( x βΎ 1 : k β£ y βΎ 1 : k ) β = : w k e , i p ( x βΎ 1 : k β£ y βΎ 1 : k ) d x βΎ 1 : k β 1
f_{k}^{e}\left(\underline{x}_{k}\right) = \int_{\mathbb{R}^{N}} \cdots \int_{\mathbb{R}^{N}} \underbrace{\frac{f\left(\underline{x}_{1: k} \mid \underline{y}_{1 : k}\right)}{p\left(\underline{x}_{1: k} \mid \underline{y}_{1 : k}\right)}}_{=: w_k^{e, i}} p\left(\underline{x}_{1: k} \mid \underline{y}_{1 : k}\right) d \underline{x}_{1: k-1}
f k e β ( x β k β ) = β« R N β β― β« R N β =: w k e , i β p ( x β 1 : k β β£ y β 1 : k β ) f ( x β 1 : k β β£ y β 1 : k β ) β β β p ( x β 1 : k β β£ y β 1 : k β ) d x β 1 : k β 1 β f ( x βΎ 1 : k β£ y βΎ 1 : k ) p ( x βΎ 1 : k β£ y βΎ 1 : k ) \frac{f\left(\underline{x}_{1: k} \mid \underline{y}_{1 : k}\right)}{p\left(\underline{x}_{1: k} \mid \underline{y}_{1 : k}\right)} p ( x β 1 : k β β£ y β 1 : k β ) f ( x β 1 : k β β£ y β 1 : k β ) β
umschreiben
ZΓ€hler
f ( x βΎ 1 : k β£ y βΎ 1 : k ) β f ( y βΎ k β£ x βΎ 1 : k , y βΎ 1 : k β 1 ) β
f ( x βΎ 1 : k β£ y βΎ 1 : k β 1 ) = f ( y βΎ k β£ x βΎ k ) β
f ( x βΎ k β£ x βΎ 1 : k β 1 , y βΎ 1 : k β 1 ) β
f ( x βΎ 1 : k β 1 β£ y βΎ 1 : k β 1 ) = f ( y βΎ k β£ x βΎ k ) β
f ( x βΎ k β£ x βΎ k β 1 ) β
f ( x βΎ 1 : k β 1 β£ y βΎ 1 : k β
1 )
\begin{aligned}
f\left(\underline{x}_{1: k} \mid \underline{y}_{1: k}\right) &\propto f\left(\underline{y}_{k} \mid \underline{x}_{1: k}, \underline{y}_{1: k - 1}\right) \cdot f\left(\underline{x}_{1: k} \mid \underline{y}_{1: k-1}\right)\\
&=f\left(\underline{y}_{k} \mid \underline{x}_{k}\right) \cdot f\left(\underline{x}_{k} \mid \underline{x}_{1:k-1}, \underline{y}_{1:k-1}\right) \cdot f\left(\underline{x}_{1:k-1} \mid \underline{y}_{1: k-1}\right)\\
&=f\left(\underline{y}_{k} \mid \underline{x}_{k}\right) \cdot f\left(\underline{x}_{k} \mid \underline{x}_{k-1}\right) \cdot f\left(\underline{x}_{1: k-1} \mid \underline{y}_{1: k \cdot 1}\right)
\end{aligned}
f ( x β 1 : k β β£ y β 1 : k β ) β β f ( y β k β β£ x β 1 : k β , y β 1 : k β 1 β ) β
f ( x β 1 : k β β£ y β 1 : k β 1 β ) = f ( y β k β β£ x β k β ) β
f ( x β k β β£ x β 1 : k β 1 β , y β 1 : k β 1 β ) β
f ( x β 1 : k β 1 β β£ y β 1 : k β 1 β ) = f ( y β k β β£ x β k β ) β
f ( x β k β β£ x β k β 1 β ) β
f ( x β 1 : k β 1 β β£ y β 1 : k β
1 β ) β Nenner
p ( x βΎ 1 : k β£ y βΎ 1 : k ) = p ( x βΎ k β£ x βΎ 1 : k β 1 , y βΎ 1 : k ) β
p ( x βΎ 1 : k β 1 β£ y βΎ 1 : k β 1 )
p\left(\underline{x}_{1: k} \mid \underline{y}_{1: k}\right)=p\left(\underline{x}_{k} \mid \underline{x}_{1: k - 1}, \underline{y}_{1: k}\right) \cdot p\left(\underline{x}_{1: k -1} \mid \underline{y}_{1: k - 1}\right)
p ( x β 1 : k β β£ y β 1 : k β ) = p ( x β k β β£ x β 1 : k β 1 β , y β 1 : k β ) β
p ( x β 1 : k β 1 β β£ y β 1 : k β 1 β ) Einsetzen, w k e , i w_k^{e, i} w k e , i β in Rekursiven Form schreiben
w k e , i = f ( x ^ βΎ 1 : k β£ y βΎ 1 : k ) p ( x ^ βΎ 1 : k β£ y βΎ 1 : k ) β f ( y βΎ k β£ x βΎ k i ) β
f ( x βΎ k i β£ x βΎ k β 1 i ) p ( x βΎ k i β£ x βΎ 1 : k β 1 i , y βΎ 1 : k ) β
f ( x βΎ 1 : k β 1 i β£ y βΎ 1 : k β
1 ) p ( x βΎ 1 : k β 1 i β£ y βΎ 1 : k β 1 ) β = w k β 1 e , i
w_k^{e, i} = \frac{f\left(\underline{\hat{x}}_{1: k} \mid \underline{y}_{1 : k}\right)}{p\left(\underline{\hat{x}}_{1: k} \mid \underline{y}_{1 : k}\right)} \propto \frac{f\left(\underline{y}_{k} \mid \underline{x}_{k}^i\right) \cdot f\left(\underline{x}_{k}^i\mid \underline{x}_{k-1}^i\right)}{p\left(\underline{x}_{k}^i \mid \underline{x}_{1: k - 1}^i, \underline{y}_{1: k}\right)} \cdot \underbrace{\frac{f\left(\underline{x}_{1: k-1}^i \mid \underline{y}_{1: k \cdot 1}\right)}{p\left(\underline{x}_{1: k -1}^i \mid \underline{y}_{1: k - 1}\right)}}_{=w_{k-1}^{e, i}}
w k e , i β = p ( x ^ β 1 : k β β£ y β 1 : k β ) f ( x ^ β 1 : k β β£ y β 1 : k β ) β β p ( x β k i β β£ x β 1 : k β 1 i β , y β 1 : k β ) f ( y β k β β£ x β k i β ) β
f ( x β k i β β£ x β k β 1 i β ) β β
= w k β 1 e , i β p ( x β 1 : k β 1 i β β£ y β 1 : k β 1 β ) f ( x β 1 : k β 1 i β β£ y β 1 : k β
1 β ) β β β und Normalisieren.
Spezielle Proposals